Home >Backend Development >Python Tutorial >How to Determine the Exact y-Axis Intersection of Data Points in Python?
When plotting data in Python, it can be useful to obtain the exact value where a curve intersects the y-axis. This value can be determined using numerical methods, specifically through linear interpolation.
The following code demonstrates how to find the zero crossings of a data array using linear interpolation:
<code class="python">import numpy as np # Generate sample data N = 750 x = .4 + np.sort(np.random.rand(N)) * 3.5 y = (x - 4) * np.cos(x * 9.) * np.cos(x * 6 + 0.05) + 0.1 # Define function to find roots (zero crossings) def find_roots(x, y): s = np.abs(np.diff(np.sign(y))).astype(bool) return x[:-1][s] + np.diff(x)[s]/(np.abs(y[1:][s]/y[:-1][s])+1) # Find zero crossings z = find_roots(x, y) # Plot data and zero crossings import matplotlib.pyplot as plt plt.plot(x, y) plt.plot(z, np.zeros(len(z)), marker="o", ls="", ms=4) plt.show()</code>
The above method can be modified to find intercepts at non-zero y-values (y0) by finding the zeros of y - y0:
<code class="python">y0 = 1.4 z = find_roots(x, y - y0) plt.plot(z, np.zeros(len(z)) + y0)</code>
Similar to the first method, finding the intersection point between two curves involves finding the zeros of the difference between the two data arrays:
<code class="python"># Generate sample data x = .4 + np.sort(np.random.rand(N)) * 3.5 y1 = (x - 4) * np.cos(x * 9.) * np.cos(x * 6 + 0.05) + 0.1 y2 = (x - 2) * np.cos(x * 8.) * np.cos(x * 5 + 0.03) + 0.3 # Find intersection points z = find_roots(x, y2 - y1) # Plot data and intersection points plt.plot(x, y1) plt.plot(x, y2, color="C2") plt.plot(z, np.interp(z, x, y1), marker="o", ls="", ms=4, color="C1")</code>
The above is the detailed content of How to Determine the Exact y-Axis Intersection of Data Points in Python?. For more information, please follow other related articles on the PHP Chinese website!