This tutorial is based on this tutorial, but with JSX, typescript and an easier approach to implement. You can checkout the notes and code on my GitHub repo.
Now let's talk about the reactivity.
Save the Old Fiber
We need to save the old fiber so that we can compare it with the new fiber. We can do this by adding a field to the fiber. We also need a committed field- which will be useful later.
export interface Fiber { type: string props: VDomAttributes parent: Fiber | null child: Fiber | null sibling: Fiber | null dom: HTMLElement | Text | null alternate: Fiber | null committed: boolean }
Then we set the committed state here,
function commit() { function commitChildren(fiber: Fiber | null) { if(!fiber) { return } if(fiber.dom && fiber.parent?.dom) { fiber.parent.dom.appendChild(fiber.dom) fiber.committed = true } if(fiber.dom && fiber.parent && isFragment(fiber.parent.vDom) && !fiber.committed) { let parent = fiber.parent // find the first parent that is not a fragment while(parent && isFragment(parent.vDom)) { // the root element is guaranteed to not be a fragment has has a non-fragment parent parent = parent.parent! } parent.dom?.appendChild(fiber.dom!) fiber.committed = true } commitChildren(fiber.child) commitChildren(fiber.sibling) } commitChildren(wip) wipParent?.appendChild(wip!.dom!) wip!.committed = true wip = null }
We also need to save the old fiber tree.
let oldFiber: Fiber | null = null function commit() { function commitChildren(fiber: Fiber | null) { if(!fiber) { return } if(fiber.dom && fiber.parent?.dom) { fiber.parent.dom.appendChild(fiber.dom) fiber.committed = true } commitChildren(fiber.child) commitChildren(fiber.sibling) } commitChildren(wip) wipParent?.appendChild(wip!.dom!) wip!.committed = true oldFiber = wip wip = null }
Now, we need to compare the old fiber with the new fiber during iteration. This is called the reconciliation process.
Reconciliation
We need to compare the old fiber with the new fiber. We first put the old fiber in the initial work.
export function render(vDom: VDomNode, parent: HTMLElement) { wip = { parent: null, sibling: null, child: null, vDom: vDom, dom: null, committed: false, alternate: oldFiber, } wipParent = parent nextUnitOfWork = wip }
Then we separate the creation of the new fiber into a new function.
function reconcile(fiber: Fiber, isFragment: boolean) { if (isElement(fiber.vDom)) { const elements = fiber.vDom.children ?? [] let index = 0 let prevSibling = null while (index <p>However, we need to mount the old fiber onto the new one.<br> </p> <pre class="brush:php;toolbar:false">function reconcile(fiber: Fiber, isFragment: boolean) { if (isElement(fiber.vDom)) { const elements = fiber.vDom.children ?? [] let index = 0 let prevSibling = null let currentOldFiber = fiber.alternate?.child ?? null while (index <p>Now we have the old fiber mounted to the new fiber. But we don't have anything to trigger the re-rendering- for now, we manually trigger it by adding a button. Since we don't yet have state yet, we use props for mutating the vDOM.<br> </p> <pre class="brush:php;toolbar:false">import { render } from "./runtime"; import { createElement, fragment, VDomAttributes, VDomNode } from "./v-dom"; type FuncComponent = (props: VDomAttributes, children: VDomNode[]) => JSX.Element const App: FuncComponent = (props: VDomAttributes, __: VDomNode[]) => { return <div> <h1 id="H">H1</h1> <h2 id="props-example-toString">{props["example"]?.toString()}</h2> { props["show"] ? <p>show</p> : > } <h1 id="H">H1</h1> > </div> } const app = document.getElementById('app') const renderButton = document.createElement('button') renderButton.textContent = 'Render' let cnt = 0 renderButton.addEventListener('click', () => { const vDom: VDomNode = App({ "example": (new Date()).toString(), "show": cnt % 2 === 0 }, []) as unknown as VDomNode cnt++ render(vDom, app!) }) document.body.appendChild(renderButton)
Now if you click the renderButton, the rendered result will repeat once, since, well, all our current logic is simply putting the rendered vDOM into the document.
If you add a console.log in the commit function, you can see the alternate fiber being printed out.
Now we need to define how we handle the old fiber and the new fiber, and mutate the DOM based on the information. The rules is as follows.
For each new fiber,
- If there was an old fiber, we compare the content of the old fiber with the new fiber, if they are different, we replace the old DOM node with the new DOM node, or else we copy the old DOM node to the new DOM node. Please note that, by two vDOM being equal, we mean their tags and all properties are equal. Their children can be different.
- If there has no old fiber, we create a new DOM node and append it to the parent.
- If, for the new fiber, it doesn't have a child or a sibling, but its old fiber has a child or a sibling, we recursively remove the old child or sibling.
Kind of confused? Well, I'll just show the code. We first delete the old DOM creation. Then apply the rules above.
The first rule, if there is an old fiber, we compare the content of the old fiber with the new fiber. If they are different, we replace the old DOM node with the new DOM node, or else we copy the old DOM node to the new DOM node.
export function vDOMEquals(a: VDomNode, b: VDomNode): boolean { if (isString(a) && isString(b)) { return a === b } else if (isElement(a) && isElement(b)) { let ret = a.tag === b.tag && a.key === b.key if (!ret) return false if (a.props && b.props) { const aProps = a.props const bProps = b.props const aKeys = Object.keys(aProps) const bKeys = Object.keys(bProps) if (aKeys.length !== bKeys.length) return false for (let i = 0; i <p>Then I made some small refactor,<br> </p><pre class="brush:php;toolbar:false">export interface Fiber { type: string props: VDomAttributes parent: Fiber | null child: Fiber | null sibling: Fiber | null dom: HTMLElement | Text | null alternate: Fiber | null committed: boolean }
Now, when it comes to commit, we have an extra alternative field to compare the old fiber with the new fiber.
This is the original commit function,
function commit() { function commitChildren(fiber: Fiber | null) { if(!fiber) { return } if(fiber.dom && fiber.parent?.dom) { fiber.parent.dom.appendChild(fiber.dom) fiber.committed = true } if(fiber.dom && fiber.parent && isFragment(fiber.parent.vDom) && !fiber.committed) { let parent = fiber.parent // find the first parent that is not a fragment while(parent && isFragment(parent.vDom)) { // the root element is guaranteed to not be a fragment has has a non-fragment parent parent = parent.parent! } parent.dom?.appendChild(fiber.dom!) fiber.committed = true } commitChildren(fiber.child) commitChildren(fiber.sibling) } commitChildren(wip) wipParent?.appendChild(wip!.dom!) wip!.committed = true wip = null }
We will change the name a bit. The old name is just wrong (I'm sorry for that).
let oldFiber: Fiber | null = null function commit() { function commitChildren(fiber: Fiber | null) { if(!fiber) { return } if(fiber.dom && fiber.parent?.dom) { fiber.parent.dom.appendChild(fiber.dom) fiber.committed = true } commitChildren(fiber.child) commitChildren(fiber.sibling) } commitChildren(wip) wipParent?.appendChild(wip!.dom!) wip!.committed = true oldFiber = wip wip = null }
Appending, Copying and Replacing
So what should we do? Our old logic is only appending, so we extract that,
export function render(vDom: VDomNode, parent: HTMLElement) { wip = { parent: null, sibling: null, child: null, vDom: vDom, dom: null, committed: false, alternate: oldFiber, } wipParent = parent nextUnitOfWork = wip }
We need to delay the construction of the DOM until the commit phase, to provide more flexibility.
function reconcile(fiber: Fiber, isFragment: boolean) { if (isElement(fiber.vDom)) { const elements = fiber.vDom.children ?? [] let index = 0 let prevSibling = null while (index <p>Following the first and second rule, we refactor them into the following code,<br> </p> <pre class="brush:php;toolbar:false">function reconcile(fiber: Fiber, isFragment: boolean) { if (isElement(fiber.vDom)) { const elements = fiber.vDom.children ?? [] let index = 0 let prevSibling = null let currentOldFiber = fiber.alternate?.child ?? null while (index <p>Please always keep in mind that in javascript, all values are references. If we have fiber.dom = fiber.alternate.dom, then fiber.dom and fiber.alternate.dom will point to the same object. If we change fiber.dom, fiber.alternate.dom will also change, and vice versa. That's why when replacing, we simply used fiber.alternate.dom?.replaceWith(fiber.dom). This will replace the old DOM with the new DOM. While previous parents, if copied, have the fiber.alternate.dom for their DOM, their DOM will also be replaced.</p> <p>However, we hadn't handled deletion yet.</p> <h3> Some Mishaps </h3> <p>Okay, previous code contains some bugs that I spotted as I am writing more complex jsx, so, before implementing the deletion, let's fix them.</p> <p>Previously there was a bug- we can not pass list to props, let's use this chance to fix it.<br> </p> <pre class="brush:php;toolbar:false">import { render } from "./runtime"; import { createElement, fragment, VDomAttributes, VDomNode } from "./v-dom"; type FuncComponent = (props: VDomAttributes, children: VDomNode[]) => JSX.Element const App: FuncComponent = (props: VDomAttributes, __: VDomNode[]) => { return <div> <h1 id="H">H1</h1> <h2 id="props-example-toString">{props["example"]?.toString()}</h2> { props["show"] ? <p>show</p> : > } <h1 id="H">H1</h1> > </div> } const app = document.getElementById('app') const renderButton = document.createElement('button') renderButton.textContent = 'Render' let cnt = 0 renderButton.addEventListener('click', () => { const vDom: VDomNode = App({ "example": (new Date()).toString(), "show": cnt % 2 === 0 }, []) as unknown as VDomNode cnt++ render(vDom, app!) }) document.body.appendChild(renderButton)
Then you just fix the type things- only one error for me, so, do it yourself please.
However, if we have the following code,
export function vDOMEquals(a: VDomNode, b: VDomNode): boolean { if (isString(a) && isString(b)) { return a === b } else if (isElement(a) && isElement(b)) { let ret = a.tag === b.tag && a.key === b.key if (!ret) return false if (a.props && b.props) { const aProps = a.props const bProps = b.props const aKeys = Object.keys(aProps) const bKeys = Object.keys(bProps) if (aKeys.length !== bKeys.length) return false for (let i = 0; i <p>Our thing broke again... </p> <p>Okay, this is because children can be nested arrays in the above case, we need to flat them.</p> <p>But that's not enough, ugh, our createDom only recognize either string or element, not integer, so, we need toString the numbers.<br> </p> <pre class="brush:php;toolbar:false">function buildDom(fiber: Fiber, fiberIsFragment: boolean) { if(fiber.dom) return if(fiberIsFragment) return fiber.dom = createDom(fiber.vDom) } function performUnitOfWork(nextUnitOfWork: Fiber | null): Fiber | null { if(!nextUnitOfWork) { return null } const fiber = nextUnitOfWork const fiberIsFragment = isFragment(fiber.vDom) reconcile(fiber) buildDom(fiber, fiberIsFragment); if (fiber.child) { return fiber.child } let nextFiber: Fiber | null = fiber while (nextFiber) { if (nextFiber.sibling) { return nextFiber.sibling } nextFiber = nextFiber.parent } return null }
Okay, things work now- kind of.
If you hit the render button, the list is updated- but the old element still remains. We need to delete the old element.
Remove
We restate the rule here- for any new fiber, if it does not have a child or a sibling, but its old fiber has a child or a sibling, we recursively remove the old child or sibling.
function commit() { function commitChildren(fiber: Fiber | null) { if(!fiber) { return } if(fiber.dom && fiber.parent?.dom) { fiber.parent?.dom?.appendChild(fiber.dom) fiber.committed = true } if(fiber.dom && fiber.parent && isFragment(fiber.parent.vDom) && !fiber.committed) { let parent = fiber.parent // find the first parent that is not a fragment while(parent && isFragment(parent.vDom)) { // the root element is guaranteed to not be a fragment has has a non-fragment parent parent = parent.parent! } parent.dom?.appendChild(fiber.dom!) fiber.committed = true } commitChildren(fiber.child) commitChildren(fiber.sibling) } commitChildren(wip) wipParent?.appendChild(wip!.dom!) wip!.committed = true oldFiber = wip wip = null }
If you don't do recursive remove, some old elements will dangle when you have multiple things requires deletion. You can change to,
function commit() { function commitToParent(fiber: Fiber | null) { if(!fiber) { return } if(fiber.dom && fiber.parent?.dom) { fiber.parent?.dom?.appendChild(fiber.dom) fiber.committed = true } if(fiber.dom && fiber.parent && isFragment(fiber.parent.vDom) && !fiber.committed) { let parent = fiber.parent // find the first parent that is not a fragment while(parent && isFragment(parent.vDom)) { // the root element is guaranteed to not be a fragment has has a non-fragment parent parent = parent.parent! } parent.dom?.appendChild(fiber.dom!) fiber.committed = true } commitToParent(fiber.child) commitToParent(fiber.sibling) } commitToParent(wip) wipParent?.appendChild(wip!.dom!) wip!.committed = true oldFiber = wip wip = null }
For reference.
Summary
This is a hard chapter- but pretty traditional coding, to be honest. However, up to now, you have understand how React works from bottom to top.
Actually, things can already work now- we can manually trigger a re-render whenever we change the props. However, such frustrating manual work is not what we want. We want the reactivity to be automatic. So, we will talk about hooks in the next chapter.
The above is the detailed content of Build a Tiny React Chpdating vDOM. For more information, please follow other related articles on the PHP Chinese website!

The main difference between Python and JavaScript is the type system and application scenarios. 1. Python uses dynamic types, suitable for scientific computing and data analysis. 2. JavaScript adopts weak types and is widely used in front-end and full-stack development. The two have their own advantages in asynchronous programming and performance optimization, and should be decided according to project requirements when choosing.

Whether to choose Python or JavaScript depends on the project type: 1) Choose Python for data science and automation tasks; 2) Choose JavaScript for front-end and full-stack development. Python is favored for its powerful library in data processing and automation, while JavaScript is indispensable for its advantages in web interaction and full-stack development.

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
