Home >Backend Development >Python Tutorial >Creating an LLM for testing with tensorflow in Python

Creating an LLM for testing with tensorflow in Python

DDD
DDDOriginal
2024-10-08 06:13:01463browse

Creating an LLM for testing with tensorflow in Python

Hi,

I want to test a small LLM program and I decided to do it with tensorflow .

My source code is available in https://github.com/victordalet/first_llm


I - Requirements

You need to install tensorflow and numpy


pip install 'numpy<2'
pip install tensorflow



II - Create Dataset

You need to make a data string array to countain a small dataset, for example I create :


data = [
    "Salut comment ca va",
    "Je suis en train de coder",
    "Le machine learning est une branche de l'intelligence artificielle",
    "Le deep learning est une branche du machine learning",
]


You can find a dataset on kaggle if you're not inspired.


III - Build model and train it

To do this, I create a small LLM class with the various methods.


class LLM:

    def __init__(self):
        self.model = None
        self.max_sequence_length = None
        self.input_sequences = None
        self.total_words = None
        self.tokenizer = None
        self.tokenize()
        self.create_input_sequences()
        self.create_model()
        self.train()
        test_sentence = "Pour moi le machine learning est"
        print(self.test(test_sentence, 10))

    def tokenize(self):
        self.tokenizer = Tokenizer()
        self.tokenizer.fit_on_texts(data)
        self.total_words = len(self.tokenizer.word_index) + 1

    def create_input_sequences(self):
        self.input_sequences = []
        for line in data:
            token_list = self.tokenizer.texts_to_sequences([line])[0]
            for i in range(1, len(token_list)):
                n_gram_sequence = token_list[:i + 1]
                self.input_sequences.append(n_gram_sequence)

        self.max_sequence_length = max([len(x) for x in self.input_sequences])
        self.input_sequences = pad_sequences(self.input_sequences, maxlen=self.max_sequence_length, padding='pre')

    def create_model(self):
        self.model = Sequential()
        self.model.add(Embedding(self.total_words, 100, input_length=self.max_sequence_length - 1))
        self.model.add(LSTM(150, return_sequences=True))
        self.model.add(Dropout(0.2))
        self.model.add(LSTM(100))
        self.model.add(Dense(self.total_words, activation='softmax'))

    def train(self):
        self.model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

        X, y = self.input_sequences[:, :-1], self.input_sequences[:, -1]
        y = tf.keras.utils.to_categorical(y, num_classes=self.total_words)

        self.model.fit(X, y, epochs=200, verbose=1)


IV - Test

Finally, I test the model, with a test method called in the constructor of my classes.

Warning: I block generation in this test function if the word generated is identical to the previous one.


    def test(self, sentence: str, nb_word_to_generate: int):
        last_word = ""
        for _ in range(nb_word_to_generate):

            token_list = self.tokenizer.texts_to_sequences([sentence])[0]
            token_list = pad_sequences([token_list], maxlen=self.max_sequence_length - 1, padding='pre')
            predicted = np.argmax(self.model.predict(token_list), axis=-1)
            output_word = ""
            for word, index in self.tokenizer.word_index.items():
                if index == predicted:
                    output_word = word
                    break

            if last_word == output_word:
                return sentence

            sentence += " " + output_word
            last_word = output_word

        return sentence


The above is the detailed content of Creating an LLM for testing with tensorflow in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn