search
HomeBackend DevelopmentC++GET NEXT LINE A Project TO Learn How To Deal with File Descriptors and I/O of System

In the realm of C programming, managing input, output, and memory effectively is fundamental. To help you grasp these critical concepts, get_next_line is a project where you'll write a function that reads a file line by line using a file descriptor. Each invocation of the function reads the next line from the file, allowing you to process the entire file content one line at a time.

Understanding File Descriptors and I/O in a System

What is a File Descriptor?

A file descriptor is a non-negative integer that uniquely identifies an open file in a system. When a program opens a file, the operating system returns a file descriptor that can be used to refer to that file in subsequent operations, such as reading, writing, or closing the file. File descriptors are an abstraction used by the operating system to manage various I/O resources, including files, sockets, and pipes.

0, 1, and 2 (standard input, standard output, and standard error) in Process A are independent and separate from the file descriptors in Process B. This isolation ensures that file operations in one process do not interfere with those in another.

file descriptor table

GET NEXT LINE A Project TO Learn How To Deal with File Descriptors and I/O of System

Each file descriptor is associated with a file descriptor table entry that contains essential information about the file. This includes the file path, access permissions, and the current offset, which tracks the position within the file for read/write operations. This structure allows the operating system to manage multiple open files efficiently and ensure correct access and data manipulation.

Note that file descriptors 0, 1, and 2 are reserved by the operating system for standard streams. File descriptor 0 is used for standard input (stdin), which typically represents input from the keyboard. File descriptor 1 is used for standard output (stdout), which represents output to the screen or terminal. File descriptor 2 is used for standard error (stderr), which also represents output to the screen or terminal but is specifically intended for error messages. These reserved file descriptors ensure that basic input and output operations can be consistently managed across different programs and environments. Any file descriptor returned by the open function will be 3 or higher, ensuring it does not conflict with these standard streams.

how to open file

example

<p>'#include <fcntl.h>'<br>
'#include <unistd.h>'</unistd.h></fcntl.h></p>

<p>int fd = open("example.txt", O_RDONLY);<br>
if (fd == -1) {<br>
    perror("Error opening file");<br>
    return 1;<br>
}</p>




code breakdown

A file descriptor, represented as an integer, is obtained using the open function, which takes two parameters: the file name (or path) and flags that determine the file's access permissions. For example, to read a file's content, we use the O_RDONLY flag (read-only). To read and write, we use the O_RDWR flag. While there are many flags available, we will use only O_RDONLY for this project. The open function returns a non-negative integer, which is the file descriptor if the operation is successful; otherwise, it returns -1 to indicate an error (you don't have permission to access example.txt). Note that the open function is in the unistd.h library, and the permission flags are defined in fcntl.h.

reading from a file descriptor

example

<p>'#include <fcntl.h>'<br>
'#include <unistd.h>'<br>
'#include <stdio.h>'<br>
'#define BUFFER_SIZE 4'</stdio.h></unistd.h></fcntl.h></p>

<p>int fd = open("example.txt", O_RDONLY);<br>
if (fd == -1) {<br>
    perror("Error opening file");<br>
    return 1;<br>
}<br>
char buffer[BUFFER_SIZE];<br>
read(fd, buffer, sizeof(buffer)-1);<br>
printf("1st call : %s\n", buffer);<br>
// prints the first 3 bytes<br>
read(fd, buffer, sizeof(buffer)-1);<br>
printf("2nd call : %s\n", buffer);<br>
read(fd, buffer, sizeof(buffer)-1);<br>
printf("3rd call : %s\n", buffer);<br>
read(fd, buffer, sizeof(buffer)-1);<br>
printf("4th call : %s\n", buffer);<br>
read(fd, buffer, sizeof(buffer)-1);<br>
printf("5th call : %s\n", buffer);</p>




breakdown

code result

1st call : HEL
2nd call : LO
3rd call : WOR
4th call : LD
5th call : (null)

The read function, provided by the unistd.h library, is used to read data from a file descriptor. It takes three parameters: the file descriptor, a buffer to store the read data, and the number of bytes to read from the file, read function returns the number of bytes read from the file.

In the file descriptor table, there's an attribute called offset. The offset keeps track of the current position within the file. Every time the read function is called, it reads data starting from the current offset and then advances the offset by the number of bytes read. This ensures that subsequent reads continue from where the last read left off.

GET NEXT LINE A Project TO Learn How To Deal with File Descriptors and I/O of System

In our example:

  • The first call to read reads the first 3 bytes from the file and stores them in the buffer, starting at the beginning of the file (offset 0). The offset is then updated to 3.
  • The second call to read reads the next 3 bytes starting from the updated offset (3), then updates the offset to 6.
    etc ...

  • 5th call to read buffer will be null and read returns 0 indicating end of file.

This process continues until all the data has been read from the file or an error occurs. The buffer is null-terminated after each read to ensure it can be printed as a string.

THE PROBLEM

char *get_next_line(int fd) takes as parameter a file descriptor of a file and returns one line for each call. If it reaches the end of the file, it returns NULL.

Parameters

  • fd: File descriptor of the file to read from.
  • BUFFER_SIZE: The size of the buffer used to read chunks from the file. your program should have no leaks.

Solution :

https://github.com/Its-JoeTheKing/get_next_line

The above is the detailed content of GET NEXT LINE A Project TO Learn How To Deal with File Descriptors and I/O of System. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Beyond the Hype: Assessing the Relevance of C   TodayBeyond the Hype: Assessing the Relevance of C TodayApr 14, 2025 am 12:01 AM

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

The C   Community: Resources, Support, and DevelopmentThe C Community: Resources, Support, and DevelopmentApr 13, 2025 am 12:01 AM

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# vs. C  : Where Each Language ExcelsC# vs. C : Where Each Language ExcelsApr 12, 2025 am 12:08 AM

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

The Continued Use of C  : Reasons for Its EnduranceThe Continued Use of C : Reasons for Its EnduranceApr 11, 2025 am 12:02 AM

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The Future of C   and XML: Emerging Trends and TechnologiesThe Future of C and XML: Emerging Trends and TechnologiesApr 10, 2025 am 09:28 AM

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

Modern C   Design Patterns: Building Scalable and Maintainable SoftwareModern C Design Patterns: Building Scalable and Maintainable SoftwareApr 09, 2025 am 12:06 AM

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C   Multithreading and Concurrency: Mastering Parallel ProgrammingC Multithreading and Concurrency: Mastering Parallel ProgrammingApr 08, 2025 am 12:10 AM

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

C   Deep Dive: Mastering Memory Management, Pointers, and TemplatesC Deep Dive: Mastering Memory Management, Pointers, and TemplatesApr 07, 2025 am 12:11 AM

C's memory management, pointers and templates are core features. 1. Memory management manually allocates and releases memory through new and deletes, and pay attention to the difference between heap and stack. 2. Pointers allow direct operation of memory addresses, and use them with caution. Smart pointers can simplify management. 3. Template implements generic programming, improves code reusability and flexibility, and needs to understand type derivation and specialization.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)