search
HomeWeb Front-endJS TutorialReact JS DOM vs React Native Component Tree: A Comprehensive Technical Comparison

React JS DOM vs React Native Component Tree: A Comprehensive Technical Comparison

Introduction

React JS and React Native, while sharing core principles, differ significantly in their approach to rendering and managing UI elements. This article provides an in-depth technical comparison of the Document Object Model (DOM) used in React JS and the component tree structure employed by React Native, including React Native's new architecture.

Architectural Overview

React JS and the DOM

React JS operates within web browsers, manipulating the Document Object Model (DOM) to render and update user interfaces.

Key characteristics:

  1. Virtual DOM: React JS uses a virtual DOM as an abstraction layer.
  2. Reconciliation: Changes are reconciled between the virtual DOM and the actual DOM.
  3. HTML Elements: UI components ultimately render to standard HTML elements.

React Native and the Component Tree

React Native, designed for mobile platforms, does not interact with a DOM. Instead, it manages a tree of native components specific to the mobile operating system (iOS or Android).

Key characteristics:

  1. Native Components: UI elements are mapped to platform-specific native components.
  2. Bridge: JavaScript core communicates with native modules via a bridge.
  3. Shadow Tree: A shadow tree of components is maintained in C for layout calculations.

React Native's New Architecture

React Native is transitioning to a new architecture that significantly changes how it handles rendering and native interactions:

  1. Fabric: A new rendering system that improves UI responsiveness and allows for more concurrent operations.
  2. TurboModules: An enhanced native module system that provides type-safe interfaces and lazy loading capabilities.

Rendering Process

React JS

  1. JSX is transpiled to React.createElement() calls.
  2. Virtual DOM is updated based on state or prop changes.
  3. Reconciliation algorithm compares virtual DOM with actual DOM.
  4. Necessary updates are batched and applied to the real DOM.

<p>// React JS Component<br>
function WebButton({ onPress, title }) {<br>
  return (<br>
    <button onclick="{onPress}" classname="web-button"><br>
      {title}<br>
    </button><br>
  );<br>
}</p>




React Native

Traditional Architecture:

  1. JSX is transpiled to React.createElement() calls (similar to React JS).
  2. Instead of DOM nodes, React Native creates instances of native components.
  3. The shadow tree is updated for layout calculations.
  4. Native UI components are updated through platform-specific APIs.

New Architecture (Fabric):

  1. JSX is still transpiled to React.createElement() calls.
  2. The rendering is now done in C , allowing for more synchronous operations.
  3. The shadow tree and layout calculations are more tightly integrated with the native rendering.
  4. Updates can be applied more efficiently, potentially in a single frame.

<p>// React Native Component (works with both architectures)<br>
import { TouchableOpacity, Text } from 'react-native';</p>

<p>function NativeButton({ onPress, title }) {<br>
  return (<br>
    <touchableopacity onpress="{onPress}"><br>
      <text>{title}</text><br>
    </touchableopacity><br>
  );<br>
}</p>




Performance Implications

React JS

  • Advantages:
    1. Virtual DOM minimizes actual DOM manipulations, improving performance.
    2. Batching updates reduces reflow and repaint operations.
  • Challenges:
    1. Large DOMs can still lead to performance issues.
    2. Complex reconciliation can be computationally expensive.

React Native

Traditional Architecture:

  • Advantages:
    1. Direct mapping to native components offers near-native performance.
    2. Shadow tree in C allows for efficient layout calculations.
  • Challenges:
    1. Bridge communication can be a bottleneck for complex interactions.
    2. Large lists or complex animations may require additional optimization.

New Architecture:

  • Advantages:
    1. Fabric allows for more synchronous operations, reducing bridge-related bottlenecks.
    2. TurboModules provide lazy loading and more efficient native module interactions.
    3. Improved type safety and potential for better performance optimizations.
  • Challenges:
    1. Migration from the old architecture may require significant effort for existing apps.
    2. Developers need to learn new concepts and potentially update their coding practices.

Developer Experience and Tooling

React JS

  • Familiar web development paradigms and tools.
  • Rich ecosystem of web-specific libraries and frameworks.
  • Browser DevTools for debugging and performance profiling.

React Native

Traditional Architecture:

  • Requires understanding of mobile development concepts.
  • Platform-specific APIs and components need separate handling.
  • Custom tooling like React Native Debugger and platform-specific profilers.

New Architecture:

  • Introduces new concepts like Fabric and TurboModules that developers need to understand.
  • Improved type safety with CodeGen for better developer experience.
  • Enhanced debugging capabilities, especially for native module interactions.

Code Reusability and Cross-Platform Development

Shared Concepts

Both React JS and React Native share core concepts:

  • Component-based architecture
  • Unidirectional data flow
  • Virtual representation of the UI

Divergences

  1. UI Components:

    • React JS uses HTML elements and CSS for styling.
    • React Native uses platform-specific components and a subset of CSS properties.
  2. Event Handling:

    • React JS: DOM events (e.g., onClick, onChange)
    • React Native: Touch events (e.g., onPress) and custom APIs
  3. Layout:

    • React JS: Flexbox, CSS Grid, and traditional CSS layouts
    • React Native: Primarily Flexbox with some limitations
  4. Native Functionality:

    • React JS: Limited to web APIs and browser capabilities.
    • React Native: Access to platform-specific APIs, enhanced with TurboModules in the new architecture.

Example of divergence in layout:


<p>// React JS<br>
</p><div style="{{" display: justifycontent:>
<br>
  <span>Centered Content</span><br>
</div>

<p>// React Native (both architectures)<br>
import { View, Text } from 'react-native';</p>

<p><view style="{{" flex: justifycontent: alignitems:><br>
  <text>Centered Content</text><br>
</view></p>




Implications for Application Architecture

React JS

  • Can leverage existing web APIs and browser capabilities.
  • SEO considerations may influence component structure.
  • Progressive enhancement and accessibility are key concerns.

React Native

Traditional Architecture:

  • Must consider platform-specific capabilities and limitations.
  • Performance optimization often involves native modules or platform-specific code.
  • UI consistency across platforms requires careful component design.

New Architecture:

  • Allows for more efficient bridge communication, potentially simplifying complex interactions.
  • TurboModules enable more granular control over native module loading and execution.
  • Fabric's synchronous layout capabilities may influence component design and animation strategies.

Conclusion

The architectural differences between React JS and React Native reflect their distinct target environments. React JS manipulates the DOM for web browsers, while React Native interacts with native components on mobile platforms. React Native's new architecture with Fabric and TurboModules represents a significant evolution, addressing performance bottlenecks and enhancing developer experience.

Understanding these differences is crucial for developers working across platforms or deciding between web and native mobile development. Each approach offers unique advantages and challenges, and the choice between them should be based on project requirements, performance needs, and target audience.

As both technologies continue to evolve, we can expect further optimizations and potentially more convergence in development patterns, making it easier to build truly cross-platform applications with React technologies.

The above is the detailed content of React JS DOM vs React Native Component Tree: A Comprehensive Technical Comparison. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
JavaScript Applications: From Front-End to Back-EndJavaScript Applications: From Front-End to Back-EndMay 04, 2025 am 12:12 AM

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Python vs. JavaScript: Which Language Should You Learn?Python vs. JavaScript: Which Language Should You Learn?May 03, 2025 am 12:10 AM

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

JavaScript Frameworks: Powering Modern Web DevelopmentJavaScript Frameworks: Powering Modern Web DevelopmentMay 02, 2025 am 12:04 AM

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

The Relationship Between JavaScript, C  , and BrowsersThe Relationship Between JavaScript, C , and BrowsersMay 01, 2025 am 12:06 AM

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr

Node.js Streams with TypeScriptNode.js Streams with TypeScriptApr 30, 2025 am 08:22 AM

Node.js excels at efficient I/O, largely thanks to streams. Streams process data incrementally, avoiding memory overload—ideal for large files, network tasks, and real-time applications. Combining streams with TypeScript's type safety creates a powe

Python vs. JavaScript: Performance and Efficiency ConsiderationsPython vs. JavaScript: Performance and Efficiency ConsiderationsApr 30, 2025 am 12:08 AM

The differences in performance and efficiency between Python and JavaScript are mainly reflected in: 1) As an interpreted language, Python runs slowly but has high development efficiency and is suitable for rapid prototype development; 2) JavaScript is limited to single thread in the browser, but multi-threading and asynchronous I/O can be used to improve performance in Node.js, and both have advantages in actual projects.

The Origins of JavaScript: Exploring Its Implementation LanguageThe Origins of JavaScript: Exploring Its Implementation LanguageApr 29, 2025 am 12:51 AM

JavaScript originated in 1995 and was created by Brandon Ike, and realized the language into C. 1.C language provides high performance and system-level programming capabilities for JavaScript. 2. JavaScript's memory management and performance optimization rely on C language. 3. The cross-platform feature of C language helps JavaScript run efficiently on different operating systems.

Behind the Scenes: What Language Powers JavaScript?Behind the Scenes: What Language Powers JavaScript?Apr 28, 2025 am 12:01 AM

JavaScript runs in browsers and Node.js environments and relies on the JavaScript engine to parse and execute code. 1) Generate abstract syntax tree (AST) in the parsing stage; 2) convert AST into bytecode or machine code in the compilation stage; 3) execute the compiled code in the execution stage.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function