search
HomeJavajavaTutorialBuilding a Rotated Sorted Array Search in Java: Understanding Pivot and Binary Search

Building a Rotated Sorted Array Search in Java: Understanding Pivot and Binary Search

What is a Rotated Sorted Array?

Consider a sorted array, for example:

[1, 2, 3, 4, 5, 6]

Now, if this array is rotated at some pivot, say at index 3, it would become:

[4, 5, 6, 1, 2, 3]

Notice that the array is still sorted, but it is divided into two parts. Our goal is to search for a target value in such arrays efficiently.


The Search Strategy

To search in a rotated sorted array, we need to:

  1. Find the Pivot: The pivot is the point where the array transitions from larger to smaller values.
  2. Binary Search: Once we find the pivot, we can use binary search on the appropriate half of the array.

Step-by-Step Code Explanation

class Solution {
    public static void main(String[] args) {
        int[] arr = {4, 5, 6, 1, 2, 3}; // Example of rotated sorted array
        int target = 5;

        // Searching for the target
        int result = search(arr, target);

        // Displaying the result
        System.out.println("Index of target: " + result);
    }

    // Main search function to find the target in a rotated sorted array
    public static int search(int[] nums, int target) {
        // Step 1: Find the pivot
        int pivot = searchPivot(nums);

        // Step 2: If no pivot, perform regular binary search
        if (pivot == -1) {
            return binarySearch(nums, target, 0, nums.length - 1);
        }

        // Step 3: If the target is at the pivot, return the pivot index
        if (nums[pivot] == target) {
            return pivot;
        }

        // Step 4: Decide which half of the array to search
        if (target >= nums[0]) {
            return binarySearch(nums, target, 0, pivot - 1); // Search left side
        } else {
            return binarySearch(nums, target, pivot + 1, nums.length - 1); // Search right side
        }
    }

    // Binary search helper function
    static int binarySearch(int[] arr, int target, int start, int end) {
        while (start  arr[mid + 1]) {
                return mid;
            }

            // Check if the pivot is before the mid
            if (mid > start && arr[mid] 




<hr>

<h3>
  
  
  Explanation of the Code
</h3>

<ol>
<li>
<p><strong>search()</strong>:</p>

<ul>
<li>This function is responsible for searching for the target in the rotated sorted array.</li>
<li>First, we find the <strong>pivot</strong> using the searchPivot() function.</li>
<li>Depending on the pivot's position, we then decide which half of the array to search using binary search.</li>
</ul>
</li>
<li>
<p><strong>binarySearch()</strong>:</p>

<ul>
<li>A standard binary search algorithm to find the target in a sorted sub-array.</li>
<li>We define the start and end indices and progressively narrow the search space.</li>
</ul>
</li>
<li>
<p><strong>searchPivot()</strong>:</p>

<ul>
<li>This function identifies the pivot point (the place where the array rotates).</li>
<li>The pivot is the index where the sorted order is "broken" (i.e., the array goes from a higher value to a lower value).</li>
<li>If no pivot is found, it means the array was not rotated, and we can perform a regular binary search.</li>
</ul>
</li>
</ol>


<hr>

<h3>
  
  
  How the Algorithm Works
</h3>

<p>For an array like [4, 5, 6, 1, 2, 3]:</p>

  • The pivot is at index 2 (6 is the largest, and it is followed by 1, the smallest).
  • We use this pivot to divide the array into two parts: [4, 5, 6] and [1, 2, 3].
  • If the target is greater than or equal to the first element (4 in this case), we search the left half. Otherwise, we search the right half.

This method ensures that we search efficiently, achieving a time complexity of O(log n), similar to a standard binary search.


Conclusion

Rotated sorted arrays are a common interview question and a useful challenge to deepen your understanding of binary search. By finding the pivot and adapting our binary search accordingly, we can efficiently search through the array in logarithmic time.

If you found this article helpful, feel free to connect with me on LinkedIn or share your thoughts in the comments! Happy coding!

The above is the detailed content of Building a Rotated Sorted Array Search in Java: Understanding Pivot and Binary Search. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Explain how the JVM acts as an intermediary between the Java code and the underlying operating system.Explain how the JVM acts as an intermediary between the Java code and the underlying operating system.Apr 29, 2025 am 12:23 AM

JVM works by converting Java code into machine code and managing resources. 1) Class loading: Load the .class file into memory. 2) Runtime data area: manage memory area. 3) Execution engine: interpret or compile execution bytecode. 4) Local method interface: interact with the operating system through JNI.

Explain the role of the Java Virtual Machine (JVM) in Java's platform independence.Explain the role of the Java Virtual Machine (JVM) in Java's platform independence.Apr 29, 2025 am 12:21 AM

JVM enables Java to run across platforms. 1) JVM loads, validates and executes bytecode. 2) JVM's work includes class loading, bytecode verification, interpretation execution and memory management. 3) JVM supports advanced features such as dynamic class loading and reflection.

What steps would you take to ensure a Java application runs correctly on different operating systems?What steps would you take to ensure a Java application runs correctly on different operating systems?Apr 29, 2025 am 12:11 AM

Java applications can run on different operating systems through the following steps: 1) Use File or Paths class to process file paths; 2) Set and obtain environment variables through System.getenv(); 3) Use Maven or Gradle to manage dependencies and test. Java's cross-platform capabilities rely on the JVM's abstraction layer, but still require manual handling of certain operating system-specific features.

Are there any areas where Java requires platform-specific configuration or tuning?Are there any areas where Java requires platform-specific configuration or tuning?Apr 29, 2025 am 12:11 AM

Java requires specific configuration and tuning on different platforms. 1) Adjust JVM parameters, such as -Xms and -Xmx to set the heap size. 2) Choose the appropriate garbage collection strategy, such as ParallelGC or G1GC. 3) Configure the Native library to adapt to different platforms. These measures can enable Java applications to perform best in various environments.

What are some tools or libraries that can help you address platform-specific challenges in Java development?What are some tools or libraries that can help you address platform-specific challenges in Java development?Apr 29, 2025 am 12:01 AM

OSGi,ApacheCommonsLang,JNA,andJVMoptionsareeffectiveforhandlingplatform-specificchallengesinJava.1)OSGimanagesdependenciesandisolatescomponents.2)ApacheCommonsLangprovidesutilityfunctions.3)JNAallowscallingnativecode.4)JVMoptionstweakapplicationbehav

How does the JVM manage garbage collection across different platforms?How does the JVM manage garbage collection across different platforms?Apr 28, 2025 am 12:23 AM

JVMmanagesgarbagecollectionacrossplatformseffectivelybyusingagenerationalapproachandadaptingtoOSandhardwaredifferences.ItemploysvariouscollectorslikeSerial,Parallel,CMS,andG1,eachsuitedfordifferentscenarios.Performancecanbetunedwithflagslike-XX:NewRa

Why can Java code run on different operating systems without modification?Why can Java code run on different operating systems without modification?Apr 28, 2025 am 12:14 AM

Java code can run on different operating systems without modification, because Java's "write once, run everywhere" philosophy is implemented by Java virtual machine (JVM). As the intermediary between the compiled Java bytecode and the operating system, the JVM translates the bytecode into specific machine instructions to ensure that the program can run independently on any platform with JVM installed.

Describe the process of compiling and executing a Java program, highlighting platform independence.Describe the process of compiling and executing a Java program, highlighting platform independence.Apr 28, 2025 am 12:08 AM

The compilation and execution of Java programs achieve platform independence through bytecode and JVM. 1) Write Java source code and compile it into bytecode. 2) Use JVM to execute bytecode on any platform to ensure the code runs across platforms.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),