search
HomeWeb Front-endJS TutorialStopping Errors Before They Stop You

Stopping Errors Before They Stop You

Stopping Errors Before They Stop You: The Safe Assignment Operator (?=) and Handling Promises Gracefully

As JavaScript evolves, new features and proposals keep rolling in, aiming to make coding more efficient and error-proof. One such feature is the Safe Assignment Operator (?=), a proposed addition to the language. While we're still waiting for its official release, we can implement similar functionality today to safeguard our code from common issues like null or undefined values.

In this article, we’ll explore the ?= operator, build our own version using existing JavaScript, and introduce practical ways to handle promises more gracefully in asynchronous operations.

Understanding the Safe Assignment Operator (?=)

What is the ?= Operator?

The Safe Assignment Operator (?=) allows developers to assign a value to a variable only if the target is null or undefined. It’s a more concise way of saying, "Assign this value if the variable is empty."

Here's how it works:

let username = null;
username ?= "Shahar"; 
console.log(username); // Output: "Shahar"

In this case, the variable username gets assigned "Shahar" because its value was null. If username had an existing value, the operator would simply pass over the assignment.

Why It's Useful

The ?= operator simplifies code by reducing the need for explicit if checks or ternary operations to ensure safe assignment. However, this operator is still in the proposal stage within ECMAScript, meaning it could change before becoming part of the JavaScript language. You can track its development here.

Crafting a Safe Assignment Function

Rolling Out safeAssign

While we're waiting for ?= to become official, we can mimic its behavior today using a custom utility function called safeAssign. This function uses the nullish coalescing operator (??), which is already widely supported in modern environments.

Here’s our safeAssign function:

function safeAssign(target, value) {
  return target ?? value;
}

Example in Action

Let’s see how it works:

let username = undefined;
username = safeAssign(username, "Shahar");
console.log(username); // Output: "Shahar"

This is effectively what the ?= operator would do. If the variable is null or undefined, we assign it a value; otherwise, we leave it untouched.

Limitations of safeAssign

While safeAssign provides similar functionality to ?=, it has limitations:

  • Simplicity: safeAssign is a utility function and cannot provide the same level of syntactic elegance as the native ?= operator. Overusing custom functions can lead to more verbose code.
  • Performance: Although the performance impact of safeAssign is negligible in small-scale applications, native operators like ?= will likely be faster in larger-scale systems due to engine optimizations.
  • Browser Support: The nullish coalescing operator (??) used in safeAssign is supported in most modern browsers and environments, but older environments may not support it without polyfills.

A Quick Comparison with Other Languages

Many other languages offer similar features to the proposed ?= operator:

  • C# has the null-coalescing assignment operator (??=), which behaves similarly to JavaScript’s ?= proposal.
  • Python uses the or keyword for safe assignments, where a = a or value is a common pattern to assign a value only if a is falsy.

These operators make handling potentially empty values more straightforward, reducing boilerplate code.

Handling Asynchronous Operations with safeAwait

Introducing safeAwait

When working with asynchronous operations in JavaScript, it’s easy to run into rejected promises or unexpected results. Instead of manually handling every rejection with .catch(), we can streamline the process using a custom function called safeAwait, which wraps promises in a cleaner, safer structure.

Here’s the safeAwait function:

async function safeAwait(promise, errorHandler) {
  try {
    const data = await promise;
    return [null, data]; // Success: No error, return the data
  } catch (error) {
    if (errorHandler) errorHandler(error); // Optional error handler
    return [error, null]; // Error occurred, return error with null data
  }
}

Example: Fetching Data with Error Handling

Let’s use safeAwait to fetch data from an API and handle potential errors:

async function getData() {
  const [error, response] = await safeAwait(
    fetch("https://api.example.com"),
    (err) => console.error("Request failed:", err)
  );

  if (error) return; // Exit if there's an error
  return response; // Return response if successful
}

In this example, safeAwait handles both the success and error cases, allowing the calling function to handle the result in a more predictable way.

Variations of safeAwait

We can also extend safeAwait for different use cases. For instance, here’s a version that retries the promise once before failing:

async function safeAwaitWithRetry(promise, errorHandler, retries = 1) {
  let attempt = 0;
  while (attempt 



<p>This variation retries the promise up to a specified number of times before throwing in the towel.</p>

<h2>
  
  
  Best Practices for Error Handling in JavaScript
</h2>

<p>When working with asynchronous code, proper error handling is crucial. Here are some best practices:</p>

<ol>
<li>
<strong>Always handle rejected promises</strong>: Unhandled promise rejections can lead to crashes or undefined behavior. Use try/catch or .catch() to ensure promises are properly handled.</li>
<li>
<strong>Centralize error handling</strong>: Utility functions like safeAwait allow you to centralize error handling, making it easier to manage and debug your code.</li>
<li>
<strong>Graceful degradation</strong>: Ensure that your application can recover from errors gracefully without crashing or leaving the user in an undefined state.</li>
<li>
<strong>Use custom error messages</strong>: When throwing errors, provide meaningful error messages to help with debugging.</li>
</ol>

<h2>
  
  
  Before and After: Clean Code with safeAssign and safeAwait
</h2>

<p>Here’s a quick comparison of how these utilities can clean up your code.</p>

<h3>
  
  
  Without safeAssign:
</h3>



<pre class="brush:php;toolbar:false">if (user === null || user === undefined) {
  user = "Shahar";
}

With safeAssign:

user = safeAssign(user, "Shahar");

Without safeAwait:

try {
  const response = await fetch("https://api.example.com");
} catch (error) {
  console.error("Request failed:", error);
}

With safeAwait:

const [error, response] = await safeAwait(fetch("https://api.example.com"), (err) => console.error("Request failed:", err));

Conclusion

In summary, while the Safe Assignment Operator (?=) is still a proposal, we can replicate its behavior today using the safeAssign function for nullish values and safeAwait for more complex asynchronous operations. Both utilities simplify your code, making it more readable and maintainable.

Key Takeaways:

  • The ?= operator simplifies safe assignments but is still in the proposal stage.
  • You can replicate ?= functionality with safeAssign using the nullish coalescing operator (??), which is widely supported.
  • For asynchronous operations, safeAwait provides a cleaner way to handle promise rejections and errors.
  • Keep an eye on ECMAScript proposals for future updates.

By leveraging these patterns, you can handle errors like a pro and keep your code clean, readable, and safe.

The above is the detailed content of Stopping Errors Before They Stop You. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Beyond the Browser: JavaScript in the Real WorldBeyond the Browser: JavaScript in the Real WorldApr 12, 2025 am 12:06 AM

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

Building a Multi-Tenant SaaS Application with Next.js (Backend Integration)Building a Multi-Tenant SaaS Application with Next.js (Backend Integration)Apr 11, 2025 am 08:23 AM

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

How to Build a Multi-Tenant SaaS Application with Next.js (Frontend Integration)How to Build a Multi-Tenant SaaS Application with Next.js (Frontend Integration)Apr 11, 2025 am 08:22 AM

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

JavaScript: Exploring the Versatility of a Web LanguageJavaScript: Exploring the Versatility of a Web LanguageApr 11, 2025 am 12:01 AM

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

The Evolution of JavaScript: Current Trends and Future ProspectsThe Evolution of JavaScript: Current Trends and Future ProspectsApr 10, 2025 am 09:33 AM

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Demystifying JavaScript: What It Does and Why It MattersDemystifying JavaScript: What It Does and Why It MattersApr 09, 2025 am 12:07 AM

JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

Is Python or JavaScript better?Is Python or JavaScript better?Apr 06, 2025 am 12:14 AM

Python is more suitable for data science and machine learning, while JavaScript is more suitable for front-end and full-stack development. 1. Python is known for its concise syntax and rich library ecosystem, and is suitable for data analysis and web development. 2. JavaScript is the core of front-end development. Node.js supports server-side programming and is suitable for full-stack development.

How do I install JavaScript?How do I install JavaScript?Apr 05, 2025 am 12:16 AM

JavaScript does not require installation because it is already built into modern browsers. You just need a text editor and a browser to get started. 1) In the browser environment, run it by embedding the HTML file through tags. 2) In the Node.js environment, after downloading and installing Node.js, run the JavaScript file through the command line.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.