Math.sqrt i.e sqrt is a part of Math namespace.
// 2 ways to get square root.
Math.sqrt(100); // 10, Method 1
100*(1/2); // 10, Method 2
8*(1/3); // 2, works for cubic root also
Math.max() & Math.min():
Math.max(23,54,12,6,32,98,87,34,11); // 98
// Does type coercion also
Math.min(23,54,12,'6',32,98,87,34,11); // 6
// Does not do parsing
Math.min(23,54,12,'6px',32,98,87,34,11); // NaN
Inbuilt constants on Math object:
Math.PI * (Number.parseFloat('10px')**(2)); // Getting area
Generate a no b/w 1-6:
Math.trunc(Math.random() * 6) 1;
Generatate a random no b/w an upper-lower limit:
const randomInt = (min, max) => Math.floor(Math.random() * (max-min)) 1 min;
randomInt(10,20);
// All of these Math.method() do type coercion.
Math.trunc(25.4); // 25
Math.round(25.4); // 25
Math.floor(25.4); // 25
Math.ceil(25.4); // 26
Math.floor is a better choice for negative numbers.
Math.trunc(-25.4); // -25
Math.floor(-25.4); // -26
// Rounding decimals: .toFixed returns a string, not a number
(2.5).toFixed(0); // '3'
(2.5).toFixed(3); // '2.500'
(2.345).toFixed(2); // '2.35'
// Add a unary sign to convert it to a no.
(2.345).toFixed(2); // 2.35
// Number is a primitive, hence they don't have methods. SO behind the scene, JS will do boxing, i.e transform primitive into a no object, perform the operation and then when operation is finished, transform it back to primitive.
Modular or Remainder Operator:
5 % 2; // 1
8 % 3; // 2
8 / 3; // 2.6666666666666665
// Odd or Even
const isEven = n => n%2 === 0;
isEven(20);
isEven(21);
isEven(22);
Usecase: Used to work with all odd rows, even rows, nth time etc.
Numeric Separators: [ES2021]
Used for representing really large numbers
These are underscores which can be placed between numbers. The engine ignores these underscores, its reduces the confusion for devs.
Ex. const diameter = 287_460_000_000;
diameter; // 287460000000
const price = 342_25;
price; // 34225
const fee1 = 1_500;
const fee2 = 15_00;
fee1 === fee2; // true
Underscore can be placed ONLY between numbers.
It cannot be placed adjacent to a dot of decimal.
It also cannot be placed at the begining or the end of the no.
const PI = 3.14_15;
PI; // 3.1415
All are invalid example of numeric separators
const PI = 3.1415; // Cannot be placed in the begining.
const PI = 3.1415; // Cannot be placed in the end.
const PI = 3_.1415; // Cannot be placed adjacent to a decimal dot.
const PI = 3.1415; // Cannot be placed adjacent to a decimal dot.
const PI = 3._1415; // Two in a row cannot be placed.
Converting Strings to Numbers:
Number('2500'); // 2500
Number('25_00'); // NaN , Hence we can only use when directly numbers are assigned to a variable. Hence, if a no is stored in the string or getting a no from an API, then to avoid error don't use '_' numeric separator.
Similar goes for parseInt i.e anything after _ is discarded as shown below:
parseInt('25_00'); // 25
BigInt
Special type of integers, introduced in ES2020
Numbers are represented internally as 64 bits i.e 64 1s or 0s to represent any number. Only 53 are used to store the digits, remaining are used to store the position of decimal point and the sign. Hence, there is a limit on the size of the number i.e ((2*53) - 1). This is the biggest no which JS can safely represent. The base is 2, because we are working in binary form while storing.
2*53 - 1; // 9007199254740991
Number.MAX_SAFE_INTEGER; // 9007199254740991
Anything larger than this is not safe i.e it cannot be represented accurately. Precision will be lost for numbers larger than this as shown in last digit. Sometimes it might work, whereas sometimes it won't.
Number.MAX_SAFE_INTEGER 1; // 9007199254740992
Number.MAX_SAFE_INTEGER 2; // 9007199254740992
Number.MAX_SAFE_INTEGER 3; // 9007199254740994
Number.MAX_SAFE_INTEGER 4; // 9007199254740996
Incase we get a larger no from an API larger than this, then JS won't be able to deal with it. So to resolve the above issue, BigInt a new primitive data type was introduces in ES2020. This can store integers as large as we want.
An 'n' is added at the end of the no to make it a BigInt. Ex.
const num = 283891738917391283734234324223122313243249821n;
num; // 283891738917391283734234324223122313243249821n
BigInt is JS way of displaying such huge numbers.
Another way using Constructor Fn for creating BigInt number.
const x = BigInt(283891738917391283734234324223122313243249821);
x; // 283891738917391288062871194223849945790676992n
Operations: All arithmetic operators work the same with BigInt;
const x = 100n 100n;
x; // 200n
const x = 10n * 10n;
x; // 100n
Avoid mixing BigInt numbers with regular numbers
const x = 100n;
const y = 10;
z = x*y; // Error
To make it work, use BigInt constructor Fn:
z = x * BigInt(y);
z; // 1000n
Exception to it are comparsion operators & unary operator.
20n > 19; // true
20n === 20; // false, === prevents JS from doing type coercion. Both the LHS & RHS have different primitive types, hence results in 'false'.
typeof 20n; // 'bigint'
typeof 20; // 'number'
20n == 20; // true, as JS does type coercion to compare only the values and not the types by converting BigInt to a regular number.
Same goes for this also: 20n == '20'; // true
Exception:
BigInt number is not converted to string on using operator.
const num = 248923874328974239473829n
"num is huge i.e. " num; // 'num is huge i.e. 248923874328974239473829'
Note:
Math.sqrt doesn't work with BigInt.
During division of BigInts, it discards the decimal part.
10 / 3; // 3.3333333333333335
10n / 3n; // 3n
12n / 3n; // 4n
This new primitive type adds some new capabilities to JS language to make it work with huge no.
The above is the detailed content of Math Namespace & BigInt. For more information, please follow other related articles on the PHP Chinese website!

The main difference between Python and JavaScript is the type system and application scenarios. 1. Python uses dynamic types, suitable for scientific computing and data analysis. 2. JavaScript adopts weak types and is widely used in front-end and full-stack development. The two have their own advantages in asynchronous programming and performance optimization, and should be decided according to project requirements when choosing.

Whether to choose Python or JavaScript depends on the project type: 1) Choose Python for data science and automation tasks; 2) Choose JavaScript for front-end and full-stack development. Python is favored for its powerful library in data processing and automation, while JavaScript is indispensable for its advantages in web interaction and full-stack development.

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Atom editor mac version download
The most popular open source editor
