Math.sqrt i.e sqrt is a part of Math namespace.
// 2 ways to get square root.
Math.sqrt(100); // 10, Method 1
100*(1/2); // 10, Method 2
8*(1/3); // 2, works for cubic root also
Math.max() & Math.min():
Math.max(23,54,12,6,32,98,87,34,11); // 98
// Does type coercion also
Math.min(23,54,12,'6',32,98,87,34,11); // 6
// Does not do parsing
Math.min(23,54,12,'6px',32,98,87,34,11); // NaN
Inbuilt constants on Math object:
Math.PI * (Number.parseFloat('10px')**(2)); // Getting area
Generate a no b/w 1-6:
Math.trunc(Math.random() * 6) 1;
Generatate a random no b/w an upper-lower limit:
const randomInt = (min, max) => Math.floor(Math.random() * (max-min)) 1 min;
randomInt(10,20);
// All of these Math.method() do type coercion.
Math.trunc(25.4); // 25
Math.round(25.4); // 25
Math.floor(25.4); // 25
Math.ceil(25.4); // 26
Math.floor is a better choice for negative numbers.
Math.trunc(-25.4); // -25
Math.floor(-25.4); // -26
// Rounding decimals: .toFixed returns a string, not a number
(2.5).toFixed(0); // '3'
(2.5).toFixed(3); // '2.500'
(2.345).toFixed(2); // '2.35'
// Add a unary sign to convert it to a no.
(2.345).toFixed(2); // 2.35
// Number is a primitive, hence they don't have methods. SO behind the scene, JS will do boxing, i.e transform primitive into a no object, perform the operation and then when operation is finished, transform it back to primitive.
Modular or Remainder Operator:
5 % 2; // 1
8 % 3; // 2
8 / 3; // 2.6666666666666665
// Odd or Even
const isEven = n => n%2 === 0;
isEven(20);
isEven(21);
isEven(22);
Usecase: Used to work with all odd rows, even rows, nth time etc.
Numeric Separators: [ES2021]
Used for representing really large numbers
These are underscores which can be placed between numbers. The engine ignores these underscores, its reduces the confusion for devs.
Ex. const diameter = 287_460_000_000;
diameter; // 287460000000
const price = 342_25;
price; // 34225
const fee1 = 1_500;
const fee2 = 15_00;
fee1 === fee2; // true
Underscore can be placed ONLY between numbers.
It cannot be placed adjacent to a dot of decimal.
It also cannot be placed at the begining or the end of the no.
const PI = 3.14_15;
PI; // 3.1415
All are invalid example of numeric separators
const PI = 3.1415; // Cannot be placed in the begining.
const PI = 3.1415; // Cannot be placed in the end.
const PI = 3_.1415; // Cannot be placed adjacent to a decimal dot.
const PI = 3.1415; // Cannot be placed adjacent to a decimal dot.
const PI = 3._1415; // Two in a row cannot be placed.
Converting Strings to Numbers:
Number('2500'); // 2500
Number('25_00'); // NaN , Hence we can only use when directly numbers are assigned to a variable. Hence, if a no is stored in the string or getting a no from an API, then to avoid error don't use '_' numeric separator.
Similar goes for parseInt i.e anything after _ is discarded as shown below:
parseInt('25_00'); // 25
BigInt
Special type of integers, introduced in ES2020
Numbers are represented internally as 64 bits i.e 64 1s or 0s to represent any number. Only 53 are used to store the digits, remaining are used to store the position of decimal point and the sign. Hence, there is a limit on the size of the number i.e ((2*53) - 1). This is the biggest no which JS can safely represent. The base is 2, because we are working in binary form while storing.
2*53 - 1; // 9007199254740991
Number.MAX_SAFE_INTEGER; // 9007199254740991
Anything larger than this is not safe i.e it cannot be represented accurately. Precision will be lost for numbers larger than this as shown in last digit. Sometimes it might work, whereas sometimes it won't.
Number.MAX_SAFE_INTEGER 1; // 9007199254740992
Number.MAX_SAFE_INTEGER 2; // 9007199254740992
Number.MAX_SAFE_INTEGER 3; // 9007199254740994
Number.MAX_SAFE_INTEGER 4; // 9007199254740996
Incase we get a larger no from an API larger than this, then JS won't be able to deal with it. So to resolve the above issue, BigInt a new primitive data type was introduces in ES2020. This can store integers as large as we want.
An 'n' is added at the end of the no to make it a BigInt. Ex.
const num = 283891738917391283734234324223122313243249821n;
num; // 283891738917391283734234324223122313243249821n
BigInt is JS way of displaying such huge numbers.
Another way using Constructor Fn for creating BigInt number.
const x = BigInt(283891738917391283734234324223122313243249821);
x; // 283891738917391288062871194223849945790676992n
Operations: All arithmetic operators work the same with BigInt;
const x = 100n 100n;
x; // 200n
const x = 10n * 10n;
x; // 100n
Avoid mixing BigInt numbers with regular numbers
const x = 100n;
const y = 10;
z = x*y; // Error
To make it work, use BigInt constructor Fn:
z = x * BigInt(y);
z; // 1000n
Exception to it are comparsion operators & unary operator.
20n > 19; // true
20n === 20; // false, === prevents JS from doing type coercion. Both the LHS & RHS have different primitive types, hence results in 'false'.
typeof 20n; // 'bigint'
typeof 20; // 'number'
20n == 20; // true, as JS does type coercion to compare only the values and not the types by converting BigInt to a regular number.
Same goes for this also: 20n == '20'; // true
Exception:
BigInt number is not converted to string on using operator.
const num = 248923874328974239473829n
"num is huge i.e. " num; // 'num is huge i.e. 248923874328974239473829'
Note:
Math.sqrt doesn't work with BigInt.
During division of BigInts, it discards the decimal part.
10 / 3; // 3.3333333333333335
10n / 3n; // 3n
12n / 3n; // 4n
This new primitive type adds some new capabilities to JS language to make it work with huge no.
The above is the detailed content of Math Namespace & BigInt. For more information, please follow other related articles on the PHP Chinese website!

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.

Understanding how JavaScript engine works internally is important to developers because it helps write more efficient code and understand performance bottlenecks and optimization strategies. 1) The engine's workflow includes three stages: parsing, compiling and execution; 2) During the execution process, the engine will perform dynamic optimization, such as inline cache and hidden classes; 3) Best practices include avoiding global variables, optimizing loops, using const and lets, and avoiding excessive use of closures.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

JavaScript's applications in the real world include server-side programming, mobile application development and Internet of Things control: 1. Server-side programming is realized through Node.js, suitable for high concurrent request processing. 2. Mobile application development is carried out through ReactNative and supports cross-platform deployment. 3. Used for IoT device control through Johnny-Five library, suitable for hardware interaction.

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Notepad++7.3.1
Easy-to-use and free code editor

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)