Introduction
When Dennis Ritchie created C, he made int (a signed integer type) be the default type. The size (number of bits) of an int was deliberately not specified. Even when C was standardized, all that was guaranteed was a minimum size. The rationale was that the size of int should be the “natural” word size for an integer on a given CPU.
If you needed only smaller signed integers and wanted to save a bit of space, Ritchie gave us short; or, if you needed bigger integers, he gave us long. (C99 gave us even bigger integers with long long.) If you only needed unsigned integers, you could include unsigned in a declaration. C99 also gave us specific-sized signed integer type aliases (e.g., int32_t) and unsigned type aliases (e.g., uint32_t).
However, in programming, negative integers (thus requiring the a signed integer type), aren’t needed most of the time. The length of strings, count of objects, size of objects, size of files, etc., are all unsigned integers. Specific-sized type aliases are needed even less than signed integers.
Yet I’ve seen a lot of code that uses integer types inappropriately. Such code can convey either underspecified or misleading information to readers (including yourself in several months’ time). It’s best to choose the right integer type for the right purpose.
Guidelines
Here are my guidelines for choosing an integer type:
- When representing a count of bytes in memory, use the size_t standard type alias.
This is the type used by both the C and C standard libraries, e.g., by memcpy(), strlen(), std::string::size(), etc., so there’s plenty of precedent.
- When representing either the size of or a position within a file on disk, use the off_t POSIX type alias.
If you’re dealing with very large files, on some platforms, you may need to compile with -D_FILE_OFFSET_BITS=64 to get a 64-bit version of off_t.
- When representing a count of objects in memory, use size_t also.
This is also the type used by both the C and C standard libraries, e.g., by fread() and fwrite().
- Only if you need to represent a value contained within a specific number of bits or you need to conform to a specific API, use one of the int8_t, int16_t, int32_t or int64_t type aliases for signed types; or one of the uint8_t, uint16_t, uint32_t, or uint64_t type aliases for unsigned types.
The only times you typically need a fixed-size integer is when you “externalize” a value, e.g., write it to disk or send it over a socket.
Using a fixed-size integer when you don’t actually need a specific number of bits conveys wrong information to the reader.
Furthermore:
When representing an integer value that must be the exact size of a pointer, use either the standard intptr_t or uintptr_t type alias.
Only if you need negative values, use one of short, int, long, or long long with int being preferred unless you need either smaller or larger values.
Lastly:
- Otherwise use one of unsigned short, unsigned, unsigned long, or unsigned long long similarly with unsigned being preferred unless you need either smaller or larger values.
That is, unless you’re dealing with one of the listed cases above, default to using unsigned types.
Conclusion
Choosing the right integer type conveys correct information to the reader and can eliminate run-time checks.
Epilogue
Originally, and up until C99, int was the implicit type, that is if you didn’t specify any type at all, it was understood to be int. For example:
power( x, n ) /* x and n are int; returns int */ { int p; for ( p = 1; n > 0; --n ) p *= x; return p; }
defines a function that has int parameters and returns int, yet int isn’t used in the declaration.
Function prototypes were back-ported from C to C89, yet the original “K&R style” function definitions were still allowed all the way up until C23. The ANSI C committee is a conservative bunch.
Even weirder, pre-C99 also allowed int to be implicit in declarations such as:
i; // int i *p; // int *p *a[4]; // int *a[4] *f(); // int *f()
Fortunately, such declarations have long since been illegal.
The above is the detailed content of Choosing an Appropriate Integer Type in C and C. For more information, please follow other related articles on the PHP Chinese website!

Integrating XML in a C project can be achieved through the following steps: 1) parse and generate XML files using pugixml or TinyXML library, 2) select DOM or SAX methods for parsing, 3) handle nested nodes and multi-level properties, 4) optimize performance using debugging techniques and best practices.

XML is used in C because it provides a convenient way to structure data, especially in configuration files, data storage and network communications. 1) Select the appropriate library, such as TinyXML, pugixml, RapidXML, and decide according to project needs. 2) Understand two ways of XML parsing and generation: DOM is suitable for frequent access and modification, and SAX is suitable for large files or streaming data. 3) When optimizing performance, TinyXML is suitable for small files, pugixml performs well in memory and speed, and RapidXML is excellent in processing large files.

The main differences between C# and C are memory management, polymorphism implementation and performance optimization. 1) C# uses a garbage collector to automatically manage memory, while C needs to be managed manually. 2) C# realizes polymorphism through interfaces and virtual methods, and C uses virtual functions and pure virtual functions. 3) The performance optimization of C# depends on structure and parallel programming, while C is implemented through inline functions and multithreading.

The DOM and SAX methods can be used to parse XML data in C. 1) DOM parsing loads XML into memory, suitable for small files, but may take up a lot of memory. 2) SAX parsing is event-driven and is suitable for large files, but cannot be accessed randomly. Choosing the right method and optimizing the code can improve efficiency.

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

The main differences between C# and C are syntax, memory management and performance: 1) C# syntax is modern, supports lambda and LINQ, and C retains C features and supports templates. 2) C# automatically manages memory, C needs to be managed manually. 3) C performance is better than C#, but C# performance is also being optimized.

You can use the TinyXML, Pugixml, or libxml2 libraries to process XML data in C. 1) Parse XML files: Use DOM or SAX methods, DOM is suitable for small files, and SAX is suitable for large files. 2) Generate XML file: convert the data structure into XML format and write to the file. Through these steps, XML data can be effectively managed and manipulated.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
