In Go, a normal struct typically occupies a block of memory. However, there's a special case: if it's an empty struct, its size is zero. How is this possible, and what is the use of an empty struct?
This article is first published in the medium MPP plan. If you are a medium user, please follow me in medium. Thank you very much.
type Test struct { A int B string } func main() { fmt.Println(unsafe.Sizeof(new(Test))) fmt.Println(unsafe.Sizeof(struct{}{})) } /* 8 0 */
The Secret of the Empty Struct
Special Variable: zerobase
An empty struct is a struct with no memory size. This statement is correct, but to be more precise, it actually has a special starting point: the zerobase variable. This is a uintptr global variable that occupies 8 bytes. Whenever countless struct {} variables are defined, the compiler assigns the address of this zerobase variable. In other words, in Go, any memory allocation with a size of 0 uses the same address, &zerobase.
Example
package main import "fmt" type emptyStruct struct {} func main() { a := struct{}{} b := struct{}{} c := emptyStruct{} fmt.Printf("%p\n", &a) fmt.Printf("%p\n", &b) fmt.Printf("%p\n", &c) } // 0x58e360 // 0x58e360 // 0x58e360
The memory addresses of variables of an empty struct are all the same. This is because the compiler assigns &zerobase during compilation when encountering this special type of memory allocation. This logic is in the mallocgc function:
//go:linkname mallocgc func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer { ... if size == 0 { return unsafe.Pointer(&zerobase) } ...
This is the secret of the Empty struct. With this special variable, we can accomplish many functionalities.
Empty Struct and Memory Alignment
Typically, if an empty struct is part of a larger struct, it doesn't occupy memory. However, there's a special case when the empty struct is the last field; it triggers memory alignment.
Example
type A struct { x int y string z struct{} } type B struct { x int z struct{} y string } func main() { println(unsafe.Alignof(A{})) println(unsafe.Alignof(B{})) println(unsafe.Sizeof(A{})) println(unsafe.Sizeof(B{})) } /** 8 8 32 24 **/
When a pointer to a field is present, the returned address may be outside the struct, potentially leading to memory leaks if the memory is not freed when the struct is released. Therefore, when an empty struct is the last field of another struct, additional memory is allocated for safety. If the empty struct is at the beginning or middle, its address is the same as the next variable.
type A struct { x int y string z struct{} } type B struct { x int z struct{} y string } func main() { a := A{} b := B{} fmt.Printf("%p\n", &a.y) fmt.Printf("%p\n", &a.z) fmt.Printf("%p\n", &b.y) fmt.Printf("%p\n", &b.z) } /** 0x1400012c008 0x1400012c018 0x1400012e008 0x1400012e008 **/
Use Cases of the Empty Struct
The core reason for the existence of the empty struct struct{} is to save memory. When you need a struct but don't care about its contents, consider using an empty struct. Go's core composite structures such as map, chan, and slice can all use struct{}.
map & struct{}
// Create map m := make(map[int]struct{}) // Assign value m[1] = struct{}{} // Check if key exists _, ok := m[1]
chan & struct{}
A classic scenario combines channel and struct{}, where struct{} is often used as a signal without caring about its content. As analyzed in previous articles, the essential data structure of a channel is a management structure plus a ring buffer. The ring buffer is zero-allocated if struct{} is used as an element.
The only use of chan and struct{} together is for signal transmission since the empty struct itself cannot carry any value. Generally, it's used with no buffer channels.
// Create a signal channel waitc := make(chan struct{}) // ... goroutine 1: // Send signal: push element waitc <p>In this scenario, is struct{} absolutely necessary? Not really, and the memory saved is negligible. The key point is that the element value of chan is not cared about, hence struct{} is used.</p> <h3> Summary </h3> <ol> <li>An empty struct is still a struct, just with a size of 0.</li> <li>All empty structs share the same address: the address of zerobase.</li> <li>We can leverage the empty struct's non-memory-occupying feature to optimize code, such as using maps to implement sets and channels.</li> </ol> <h3> References </h3> <ol> <li>The empty struct, Dave Cheney</li> <li>Go 最细节篇— struct{} 空结构体究竟是啥?</li> </ol>
The above is the detailed content of Decrypt Go: empty struct. For more information, please follow other related articles on the PHP Chinese website!

Golang is suitable for rapid development and concurrent programming, while C is more suitable for projects that require extreme performance and underlying control. 1) Golang's concurrency model simplifies concurrency programming through goroutine and channel. 2) C's template programming provides generic code and performance optimization. 3) Golang's garbage collection is convenient but may affect performance. C's memory management is complex but the control is fine.

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

The relationship between technology stack convergence and technology selection In software development, the selection and management of technology stacks are a very critical issue. Recently, some readers have proposed...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version
SublimeText3 Linux latest version

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version
Useful JavaScript development tools