In Go, a normal struct typically occupies a block of memory. However, there's a special case: if it's an empty struct, its size is zero. How is this possible, and what is the use of an empty struct?
This article is first published in the medium MPP plan. If you are a medium user, please follow me in medium. Thank you very much.
type Test struct { A int B string } func main() { fmt.Println(unsafe.Sizeof(new(Test))) fmt.Println(unsafe.Sizeof(struct{}{})) } /* 8 0 */
The Secret of the Empty Struct
Special Variable: zerobase
An empty struct is a struct with no memory size. This statement is correct, but to be more precise, it actually has a special starting point: the zerobase variable. This is a uintptr global variable that occupies 8 bytes. Whenever countless struct {} variables are defined, the compiler assigns the address of this zerobase variable. In other words, in Go, any memory allocation with a size of 0 uses the same address, &zerobase.
Example
package main import "fmt" type emptyStruct struct {} func main() { a := struct{}{} b := struct{}{} c := emptyStruct{} fmt.Printf("%p\n", &a) fmt.Printf("%p\n", &b) fmt.Printf("%p\n", &c) } // 0x58e360 // 0x58e360 // 0x58e360
The memory addresses of variables of an empty struct are all the same. This is because the compiler assigns &zerobase during compilation when encountering this special type of memory allocation. This logic is in the mallocgc function:
//go:linkname mallocgc func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer { ... if size == 0 { return unsafe.Pointer(&zerobase) } ...
This is the secret of the Empty struct. With this special variable, we can accomplish many functionalities.
Empty Struct and Memory Alignment
Typically, if an empty struct is part of a larger struct, it doesn't occupy memory. However, there's a special case when the empty struct is the last field; it triggers memory alignment.
Example
type A struct { x int y string z struct{} } type B struct { x int z struct{} y string } func main() { println(unsafe.Alignof(A{})) println(unsafe.Alignof(B{})) println(unsafe.Sizeof(A{})) println(unsafe.Sizeof(B{})) } /** 8 8 32 24 **/
When a pointer to a field is present, the returned address may be outside the struct, potentially leading to memory leaks if the memory is not freed when the struct is released. Therefore, when an empty struct is the last field of another struct, additional memory is allocated for safety. If the empty struct is at the beginning or middle, its address is the same as the next variable.
type A struct { x int y string z struct{} } type B struct { x int z struct{} y string } func main() { a := A{} b := B{} fmt.Printf("%p\n", &a.y) fmt.Printf("%p\n", &a.z) fmt.Printf("%p\n", &b.y) fmt.Printf("%p\n", &b.z) } /** 0x1400012c008 0x1400012c018 0x1400012e008 0x1400012e008 **/
Use Cases of the Empty Struct
The core reason for the existence of the empty struct struct{} is to save memory. When you need a struct but don't care about its contents, consider using an empty struct. Go's core composite structures such as map, chan, and slice can all use struct{}.
map & struct{}
// Create map m := make(map[int]struct{}) // Assign value m[1] = struct{}{} // Check if key exists _, ok := m[1]
chan & struct{}
A classic scenario combines channel and struct{}, where struct{} is often used as a signal without caring about its content. As analyzed in previous articles, the essential data structure of a channel is a management structure plus a ring buffer. The ring buffer is zero-allocated if struct{} is used as an element.
The only use of chan and struct{} together is for signal transmission since the empty struct itself cannot carry any value. Generally, it's used with no buffer channels.
// Create a signal channel waitc := make(chan struct{}) // ... goroutine 1: // Send signal: push element waitc <p>In this scenario, is struct{} absolutely necessary? Not really, and the memory saved is negligible. The key point is that the element value of chan is not cared about, hence struct{} is used.</p> <h3> Summary </h3> <ol> <li>An empty struct is still a struct, just with a size of 0.</li> <li>All empty structs share the same address: the address of zerobase.</li> <li>We can leverage the empty struct's non-memory-occupying feature to optimize code, such as using maps to implement sets and channels.</li> </ol> <h3> References </h3> <ol> <li>The empty struct, Dave Cheney</li> <li>Go 最细节篇— struct{} 空结构体究竟是啥?</li> </ol>
The above is the detailed content of Decrypt Go: empty struct. For more information, please follow other related articles on the PHP Chinese website!

In Go, using mutexes and locks is the key to ensuring thread safety. 1) Use sync.Mutex for mutually exclusive access, 2) Use sync.RWMutex for read and write operations, 3) Use atomic operations for performance optimization. Mastering these tools and their usage skills is essential to writing efficient and reliable concurrent programs.

How to optimize the performance of concurrent Go code? Use Go's built-in tools such as getest, gobench, and pprof for benchmarking and performance analysis. 1) Use the testing package to write benchmarks to evaluate the execution speed of concurrent functions. 2) Use the pprof tool to perform performance analysis and identify bottlenecks in the program. 3) Adjust the garbage collection settings to reduce its impact on performance. 4) Optimize channel operation and limit the number of goroutines to improve efficiency. Through continuous benchmarking and performance analysis, the performance of concurrent Go code can be effectively improved.

The common pitfalls of error handling in concurrent Go programs include: 1. Ensure error propagation, 2. Processing timeout, 3. Aggregation errors, 4. Use context management, 5. Error wrapping, 6. Logging, 7. Testing. These strategies help to effectively handle errors in concurrent environments.

ImplicitinterfaceimplementationinGoembodiesducktypingbyallowingtypestosatisfyinterfaceswithoutexplicitdeclaration.1)Itpromotesflexibilityandmodularitybyfocusingonbehavior.2)Challengesincludeupdatingmethodsignaturesandtrackingimplementations.3)Toolsli

In Go programming, ways to effectively manage errors include: 1) using error values instead of exceptions, 2) using error wrapping techniques, 3) defining custom error types, 4) reusing error values for performance, 5) using panic and recovery with caution, 6) ensuring that error messages are clear and consistent, 7) recording error handling strategies, 8) treating errors as first-class citizens, 9) using error channels to handle asynchronous errors. These practices and patterns help write more robust, maintainable and efficient code.

Implementing concurrency in Go can be achieved by using goroutines and channels. 1) Use goroutines to perform tasks in parallel, such as enjoying music and observing friends at the same time in the example. 2) Securely transfer data between goroutines through channels, such as producer and consumer models. 3) Avoid excessive use of goroutines and deadlocks, and design the system reasonably to optimize concurrent programs.

Gooffersmultipleapproachesforbuildingconcurrentdatastructures,includingmutexes,channels,andatomicoperations.1)Mutexesprovidesimplethreadsafetybutcancauseperformancebottlenecks.2)Channelsofferscalabilitybutmayblockiffullorempty.3)Atomicoperationsareef

Go'serrorhandlingisexplicit,treatingerrorsasreturnedvaluesratherthanexceptions,unlikePythonandJava.1)Go'sapproachensureserrorawarenessbutcanleadtoverbosecode.2)PythonandJavauseexceptionsforcleanercodebutmaymisserrors.3)Go'smethodpromotesrobustnessand


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Zend Studio 13.0.1
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
