search
HomeWeb Front-endJS TutorialReactJS Design Patterns: Writing Robust and Scalable Components

ReactJS Design Patterns: Writing Robust and Scalable Components

Design patterns in ReactJS provide standardized and proven solutions to common problems in application development. Using these patterns not only makes your code more readable and maintainable but also enhances its scalability and robustness. Let's dive into some of the most popular ReactJS design patterns, with examples to illustrate their usage.

1. Container and Presentational Components Pattern

The Container and Presentational pattern separates components into two categories:

  • Presentational Components: Focus on how things look (UI).
  • Container Components: Focus on how things work (logic and state management).

This separation allows for better reusability, easier testing, and cleaner code.

Example: Presentational and Container Components

// Presentational Component: Displaying User List (UserList.js)
import React from 'react';

const UserList = ({ users }) => (
  
    {users.map((user) => (
  • {user.name}
  • ))}
); export default UserList;
// Container Component: Fetching User Data (UserContainer.js)
import React, { useState, useEffect } from 'react';
import UserList from './UserList';

const UserContainer = () => {
  const [users, setUsers] = useState([]);

  useEffect(() => {
    const fetchUsers = async () => {
      const response = await fetch('https://jsonplaceholder.typicode.com/users');
      const data = await response.json();
      setUsers(data);
    };
    fetchUsers();
  }, []);

  return <userlist users="{users}"></userlist>;
};

export default UserContainer;

Here, UserList is a presentational component that receives users as props, while UserContainer handles data fetching and state management.

2. Higher-Order Components (HOC) Pattern

A Higher-Order Component (HOC) is a function that takes a component as an argument and returns a new component. HOCs are commonly used for cross-cutting concerns like authentication, logging, or enhancing component behavior.

Example: Creating an HOC for Authorization

// withAuthorization.js (HOC for Authorization)
import React from 'react';

const withAuthorization = (WrappedComponent) => {
  return class extends React.Component {
    componentDidMount() {
      if (!localStorage.getItem('authToken')) {
        // Redirect to login if not authenticated
        window.location.href = '/login';
      }
    }

    render() {
      return <wrappedcomponent></wrappedcomponent>;
    }
  };
};

export default withAuthorization;
// Dashboard.js (Component Wrapped with HOC)
import React from 'react';
import withAuthorization from './withAuthorization';

const Dashboard = () => <h1 id="Welcome-to-the-Dashboard">Welcome to the Dashboard</h1>;

export default withAuthorization(Dashboard);

By wrapping Dashboard with withAuthorization, you ensure that only authenticated users can access it.

3. Render Props Pattern

The Render Props pattern involves sharing code between components using a prop whose value is a function. This pattern is useful for dynamic rendering based on certain conditions or states.

Example: Using Render Props for Mouse Tracking

// MouseTracker.js (Component with Render Props)
import React, { useState } from 'react';

const MouseTracker = ({ render }) => {
  const [position, setPosition] = useState({ x: 0, y: 0 });

  const handleMouseMove = (event) => {
    setPosition({ x: event.clientX, y: event.clientY });
  };

  return <div onmousemove="{handleMouseMove}">{render(position)}</div>;
};

export default MouseTracker;
// App.js (Using Render Props)
import React from 'react';
import MouseTracker from './MouseTracker';

const App = () => (
  <mousetracker render="{({" x y> (
      <h1>
        Mouse position: ({x}, {y})
      </h1>
    )}
  />
);

export default App;
</mousetracker>

The MouseTracker component uses a render prop to pass mouse position data to any component, making it highly reusable.

4. Custom Hooks Pattern

Custom Hooks allow you to encapsulate and reuse stateful logic across multiple components. This pattern promotes code reusability and clean separation of concerns.

Example: Creating a Custom Hook for Fetching Data

// useFetch.js (Custom Hook)
import { useState, useEffect } from 'react';

const useFetch = (url) => {
  const [data, setData] = useState(null);
  const [loading, setLoading] = useState(true);

  useEffect(() => {
    const fetchData = async () => {
      const response = await fetch(url);
      const result = await response.json();
      setData(result);
      setLoading(false);
    };
    fetchData();
  }, [url]);

  return { data, loading };
};

export default useFetch;
// App.js (Using the Custom Hook)
import React from 'react';
import useFetch from './useFetch';

const App = () => {
  const { data, loading } = useFetch('https://jsonplaceholder.typicode.com/posts');

  if (loading) return <div>Loading...</div>;

  return (
    
    {data.map((post) => (
  • {post.title}
  • ))}
); }; export default App;

The useFetch custom hook encapsulates the data fetching logic, which can be reused across different components.

5. Compound Components Pattern

The Compound Components pattern allows components to work together to manage state and behavior. This pattern is useful for building complex UI components like tabs, accordions, or dropdowns.

Example: Building Tabs with Compound Components

// Tabs.js (Parent Component)
import React, { useState } from 'react';

const Tabs = ({ children }) => {
  const [activeIndex, setActiveIndex] = useState(0);

  return React.Children.map(children, (child, index) =>
    React.cloneElement(child, { isActive: index === activeIndex, setActiveIndex, index })
  );
};

const Tab = ({ children, isActive, setActiveIndex, index }) => (
  <button onclick="{()"> setActiveIndex(index)}>{children}</button>
);

const TabPanel = ({ children, isActive }) => (isActive ? <div>{children}</div> : null);

Tabs.Tab = Tab;
Tabs.TabPanel = TabPanel;

export default Tabs;
// App.js (Using Compound Components)
import React from 'react';
import Tabs from './Tabs';

const App = () => (
  <tabs>
    <tabs.tab>Tab 1</tabs.tab>
    <tabs.tab>Tab 2</tabs.tab>
    <tabs.tabpanel>Content for Tab 1</tabs.tabpanel>
    <tabs.tabpanel>Content for Tab 2</tabs.tabpanel>
  </tabs>
);

export default App;

The Tabs component manages state, while Tab and TabPanel components work together to display the tabbed content.

6. Controlled and Uncontrolled Components Pattern

Controlled components are fully managed by React state, while uncontrolled components rely on the DOM for their state. Both have their uses, but controlled components are generally preferred for consistency and maintainability.

Example: Controlled vs. Uncontrolled Components

// Controlled Component (TextInputControlled.js)
import React, { useState } from 'react';

const TextInputControlled = () => {
  const [value, setValue] = useState('');

  return (
    <input type="text" value="{value}" onchange="{(e)"> setValue(e.target.value)} />
  );
};

export default TextInputControlled;
// Uncontrolled Component (TextInputUncontrolled.js)
import React, { useRef } from 'react';

const TextInputUncontrolled = () => {
  const inputRef = useRef();

  const handleClick = () => {
    console.log(inputRef.current.value);
  };

  return (
    
      <input type="text" ref="{inputRef}">
      <button onclick="{handleClick}">Log Input Value</button>
    >
  );
};

export default TextInputUncontrolled;

In controlled components, React fully controls the form state, while in uncontrolled components, the state is managed by the DOM itself.

7. Hooks Factory Pattern

The Hooks Factory Pattern involves creating hooks that dynamically generate and manage multiple states or behaviors, providing a flexible way to manage complex logic.

Example: Dynamic State Management with Hooks Factory

// useDynamicState.js (Hook Factory)
import { useState } from 'react';

const useDynamicState = (initialStates) => {
  const states = {};
  const setters = {};

  initialStates.forEach(([key, initialValue]) => {
    const [state, setState] = useState(initialValue);
    states[key] = state;
    setters[key] = setState;
  });

  return [states, setters];
};

export default useDynamicState;
// App.js (Using the Hooks Factory)
import React from 'react';
import useDynamicState from './useDynamicState';

const App = () => {
  const [states, setters] = useDynamicState([
    ['name', ''],
    ['age', 0],
  ]);

  return (
    <div>
      <input type="text" value="{states.name}" onchange="{(e)"> setters

.name(e.target.value)}
      />
      <input type="number" value="{states.age}" onchange="{(e)"> setters.age(parseInt(e.target.value))}
      />
      <p>Name: {states.name}</p>
      <p>Age: {states.age}</p>
    </div>
  );
};

export default App;

This hook factory dynamically creates and manages multiple states, providing flexibility and cleaner code.

Conclusion

By leveraging these design patterns, you can create React applications that are more robust, scalable, and maintainable. These patterns help you write clean, reusable code that adheres to best practices, ensuring your application is easier to develop and manage over time.

Would you like to dive deeper into any of these patterns or explore other topics?

The above is the detailed content of ReactJS Design Patterns: Writing Robust and Scalable Components. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. JavaScript: A Comparative Analysis for DevelopersPython vs. JavaScript: A Comparative Analysis for DevelopersMay 09, 2025 am 12:22 AM

The main difference between Python and JavaScript is the type system and application scenarios. 1. Python uses dynamic types, suitable for scientific computing and data analysis. 2. JavaScript adopts weak types and is widely used in front-end and full-stack development. The two have their own advantages in asynchronous programming and performance optimization, and should be decided according to project requirements when choosing.

Python vs. JavaScript: Choosing the Right Tool for the JobPython vs. JavaScript: Choosing the Right Tool for the JobMay 08, 2025 am 12:10 AM

Whether to choose Python or JavaScript depends on the project type: 1) Choose Python for data science and automation tasks; 2) Choose JavaScript for front-end and full-stack development. Python is favored for its powerful library in data processing and automation, while JavaScript is indispensable for its advantages in web interaction and full-stack development.

Python and JavaScript: Understanding the Strengths of EachPython and JavaScript: Understanding the Strengths of EachMay 06, 2025 am 12:15 AM

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScript's Core: Is It Built on C or C  ?JavaScript's Core: Is It Built on C or C ?May 05, 2025 am 12:07 AM

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript Applications: From Front-End to Back-EndJavaScript Applications: From Front-End to Back-EndMay 04, 2025 am 12:12 AM

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Python vs. JavaScript: Which Language Should You Learn?Python vs. JavaScript: Which Language Should You Learn?May 03, 2025 am 12:10 AM

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

JavaScript Frameworks: Powering Modern Web DevelopmentJavaScript Frameworks: Powering Modern Web DevelopmentMay 02, 2025 am 12:04 AM

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

The Relationship Between JavaScript, C  , and BrowsersThe Relationship Between JavaScript, C , and BrowsersMay 01, 2025 am 12:06 AM

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment