search

What is Machine Learning?

Machine Learning is a field of Computer Science that uses statical technologies to give computer systems the ability to 'Learn' with data, without being explicitly programmed.

That means, "ML is all about Learning from Data"

Explicit Programming means, writing codes for each scenario, to handle that situation.

Introductions to ML

In machine learning, instead of writing explicit code for each scenario, we train models to learn patterns from data, allowing them to make predictions or decisions for unseen situations.

Introductions to ML

So, We give input and output, but don't write any code for each and every case. ML Algorithms automatically handle them.

An simple example can use:

Summation Function:

In explicit programming, to add 2 numbers, we write specific code that works only for that case. This code won’t work for adding 5 or N numbers without modification.

In contrast, with ML, we can provide an Excel file where each row contains different numbers and their sum. As the ML algorithm trains on this dataset, it learns the pattern of addition. In the future, when given 2, 10, or N numbers, it can perform the addition based on the learned pattern, without needing specific code for each scenario.

Where we are using ML?

  • Email Spam Classifier:

In explicit programming, I wrote multiple if-else conditions, such as: “If a keyword appears 3 or more times, it will be flagged as spam.” For example, if the word “Huge” is used 3 times, it’s marked as spam.

Now, imagine an advertising company realize there’s an algorithm like this to detect their spam. So instead of repeating “Huge” 3 times, they use synonyms like “Huge,” “Massive,” and “Big.” In this case, the original rule wouldn’t work. What would be the solution? Should I again change my previous algorithms? How many time I will able to do that?

In ML, the model learns from the data provided and automatically creates algorithms based on that data. If the data changes, the algorithm adjusts accordingly. There’s no need to manually change the algorithm, it will update itself as needed based on the new data.

  • Image Classification:

In explicit programming for image classification, we would need to manually write rules to identify features of a dog, like its shape, size, fur color, or tail. These rules would only work for specific images and would not generalize well to all dog breeds. If we encountered new breeds or variations, we would need to add new rules for each one.

In ML, instead of writing specific rules, we provide the model with a large dataset of dog images labeled by breed. The model then learns patterns from the data, such as the common characteristics of different breeds, and uses that learned knowledge to classify new dog images, even if it hasn't seen those exact breeds before. The algorithm automatically adapts to variations in the data.

also, there are thousand of uses of ML. You might wonder,
why wasn’t machine learning as popular before 2010?

  • Limited storage capacity made it difficult to store large amounts of data due to the shortage of hard drives.
  • There wasn’t enough available data to effectively train machine learning models.
  • Hardware limitations, such as less powerful GPUs and processors, restricted the ability to run complex algorithms efficiently.

Nowadays, we are generating millions of data points every day. Using this vast amount of data, ML models are now becoming more accurate, efficient, and capable of solving complex problems. They can learn patterns, make predictions, and automate tasks across various fields such as healthcare, finance, and technology, improving decision-making and driving innovation.

Thank you for taking the time to read through this.

The above is the detailed content of Introductions to ML. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

Image Filtering in PythonImage Filtering in PythonMar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Introduction to Parallel and Concurrent Programming in PythonIntroduction to Parallel and Concurrent Programming in PythonMar 03, 2025 am 10:32 AM

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

How to Implement Your Own Data Structure in PythonHow to Implement Your Own Data Structure in PythonMar 03, 2025 am 09:28 AM

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools