Introduction
If you need to know the basics of Kafka, such as its key features, components, and advantages, I have an article covering that here. Please review it and follow the steps until you've completed the Kafka installation using Docker to proceed with the following sections.
Connecting to Kafka with Golang
Similar to the example in the article about connecting Kafka with NodeJS, this source code also includes two parts: initializing a producer to send messages to Kafka and using a consumer to subscribe to messages from a topic.
I'll break down the code into smaller parts for better understanding. First, let's define the variable values.
package main import ( "fmt" "github.com/confluentinc/confluent-kafka-go/kafka" ) var ( broker = "localhost:9092" groupId = "group-id" topic = "topic-name" )
- Here, the package github.com/confluentinc/confluent-kafka-go/kafka is used to connect to Kafka.
- The broker is the host address; if you are using ZooKeeper, replace the host address accordingly.
- The groupId and topic can be changed as needed.
Next is initializing the producer.
func startProducer() { p, err := kafka.NewProducer(&kafka.ConfigMap{"bootstrap.servers": broker}) if err != nil { panic(err) } go func() { for e := range p.Events() { switch ev := e.(type) { case *kafka.Message: if ev.TopicPartition.Error != nil { fmt.Printf("Delivery failed: %v\n", ev.TopicPartition) } else { fmt.Printf("Delivered message to %v\n", ev.TopicPartition) } } } }() for _, word := range []string{"message 1", "message 2", "message 3"} { p.Produce(&kafka.Message{ TopicPartition: kafka.TopicPartition{Topic: &topic, Partition: kafka.PartitionAny}, Value: []byte(word), }, nil) } }
The above code is used to send an array of messages {"message 1", "message 2", "message 3"} to a topic and uses a go-routine to iterate through events with for e := range p.Events() and print out the delivery result, whether it's a success or failure.
Next is creating a consumer to subscribe to the topic and receive messages.
func startConsumer() { c, err := kafka.NewConsumer(&kafka.ConfigMap{ "bootstrap.servers": broker, "group.id": groupId, "auto.offset.reset": "earliest", }) if err != nil { panic(err) } c.Subscribe(topic, nil) for { msg, err := c.ReadMessage(-1) if err == nil { fmt.Printf("Message on %s: %s\n", msg.TopicPartition, string(msg.Value)) } else { fmt.Printf("Consumer error: %v (%v)\n", err, msg) break } } c.Close() }
Finally, since this is a simple example, call the functions to create the producer and consumer for use. In a real-world scenario, the deployment of the producer and consumer is typically done on two different servers in a microservices system.
func main() { startProducer() startConsumer() }
Happy coding!
If you found this content helpful, please visit the original article on my blog to support the author and explore more interesting content.
Some series you might find interesting:
- NodeJS
- React
- Docker
- Kubernetes
The above is the detailed content of Connect Kafka with Golang. For more information, please follow other related articles on the PHP Chinese website!

Mastering the strings package in Go language can improve text processing capabilities and development efficiency. 1) Use the Contains function to check substrings, 2) Use the Index function to find the substring position, 3) Join function efficiently splice string slices, 4) Replace function to replace substrings. Be careful to avoid common errors, such as not checking for empty strings and large string operation performance issues.

You should care about the strings package in Go because it simplifies string manipulation and makes the code clearer and more efficient. 1) Use strings.Join to efficiently splice strings; 2) Use strings.Fields to divide strings by blank characters; 3) Find substring positions through strings.Index and strings.LastIndex; 4) Use strings.ReplaceAll to replace strings; 5) Use strings.Builder to efficiently splice strings; 6) Always verify input to avoid unexpected results.

ThestringspackageinGoisessentialforefficientstringmanipulation.1)Itofferssimpleyetpowerfulfunctionsfortaskslikecheckingsubstringsandjoiningstrings.2)IthandlesUnicodewell,withfunctionslikestrings.Fieldsforwhitespace-separatedvalues.3)Forperformance,st

WhendecidingbetweenGo'sbytespackageandstringspackage,usebytes.Bufferforbinarydataandstrings.Builderforstringoperations.1)Usebytes.Bufferforworkingwithbyteslices,binarydata,appendingdifferentdatatypes,andwritingtoio.Writer.2)Usestrings.Builderforstrin

Go's strings package provides a variety of string manipulation functions. 1) Use strings.Contains to check substrings. 2) Use strings.Split to split the string into substring slices. 3) Merge strings through strings.Join. 4) Use strings.TrimSpace or strings.Trim to remove blanks or specified characters at the beginning and end of a string. 5) Replace all specified substrings with strings.ReplaceAll. 6) Use strings.HasPrefix or strings.HasSuffix to check the prefix or suffix of the string.

Using the Go language strings package can improve code quality. 1) Use strings.Join() to elegantly connect string arrays to avoid performance overhead. 2) Combine strings.Split() and strings.Contains() to process text and pay attention to case sensitivity issues. 3) Avoid abuse of strings.Replace() and consider using regular expressions for a large number of substitutions. 4) Use strings.Builder to improve the performance of frequently splicing strings.

Go's bytes package provides a variety of practical functions to handle byte slicing. 1.bytes.Contains is used to check whether the byte slice contains a specific sequence. 2.bytes.Split is used to split byte slices into smallerpieces. 3.bytes.Join is used to concatenate multiple byte slices into one. 4.bytes.TrimSpace is used to remove the front and back blanks of byte slices. 5.bytes.Equal is used to compare whether two byte slices are equal. 6.bytes.Index is used to find the starting index of sub-slices in largerslices.

Theencoding/binarypackageinGoisessentialbecauseitprovidesastandardizedwaytoreadandwritebinarydata,ensuringcross-platformcompatibilityandhandlingdifferentendianness.ItoffersfunctionslikeRead,Write,ReadUvarint,andWriteUvarintforprecisecontroloverbinary


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor
