Introduction
The Java Memory Model (JMM) is a fundamental but often misunderstood aspect of concurrent programming in Java. Introduced with Java 5, the JMM defines how threads interact with memory, ensuring consistency and predictability in multi-threaded programs. In this article, we'll dive into the depths of JMM, explore its key concepts, and examine how it affects concurrent Java application development.
Fundamental concepts of JMM
1. Visibility
Visibility concerns ensuring that a modification made by one thread is visible to other threads. Without proper mechanisms, a thread can hide its changes from other threads indefinitely due to compiler or CPU optimizations.
2. Scheduling
Scheduling refers to the order in which instructions are executed. The JMM allows certain reorganizations for performance reasons, but also guarantees certain orders to maintain the semantics of the program.
3. Atomicity
Atomicity ensures that an operation is performed in a single indivisible step, without possible interference from other threads.
Key mechanisms of JMM
1. Happens-Before Relationship
This is the basis of the JMM. If an action A "happens-before" an action B, then the effects of A are guaranteed to be visible to B. This relationship is transitive and forms the basis of synchronization in Java.
2. Volatile
The volatile keyword ensures that changes are visible between threads. A read of a volatile variable will always see the last write performed on that variable.
3. Synchronized
synchronized blocks and methods establish happens-before relationships between threads that acquire and release the same monitor.
4. Final
Properly initialized final fields are guaranteed to be visible to all threads without additional synchronization.
Practical implications
1. Double-Checked Locking
The double-checked locking pattern was broken before Java 5 due to visibility issues. The JMM fixed this issue, allowing its correct use with volatile.
class Singleton { private static volatile Singleton instance; public static Singleton getInstance() { if (instance == null) { synchronized (Singleton.class) { if (instance == null) { instance = new Singleton(); } } } return instance; } }
2. Publishing objects
Safely publishing objects is crucial to avoid partial visibility issues. The JMM guarantees that if an object is correctly published (for example, via a volatile field or a thread-safe class), all of its fields will be visible.
3. Reorganization of instructions
The JMM allows certain reorganizations which may surprise developers.
For example:
int a, b; a = 1; b = 2;
Can be rearranged into:
int a, b; b = 2; a = 1;
Unless these instructions are surrounded by appropriate timing barriers.
Conclusion
The Java Memory Model is a crucial aspect of concurrent programming in Java. Although complex, understanding it is essential for writing correct and efficient concurrent code. By mastering the concepts of visibility, scheduling and atomicity, as well as mechanisms like happens-before, volatile and synchronized, developers can create robust and efficient multi-threaded applications.
However, it is important to note that even with a good understanding of JMM, concurrent programming remains a challenge. Using high-level abstractions like those provided by the java.util.concurrent package can often simplify development while still taking advantage of JMM guarantees.
The above is the detailed content of The Java Memory Model: Understanding concurrency in depth. For more information, please follow other related articles on the PHP Chinese website!

JavaachievesplatformindependencethroughtheJavaVirtualMachine(JVM),allowingcodetorunondifferentoperatingsystemswithoutmodification.TheJVMcompilesJavacodeintoplatform-independentbytecode,whichittheninterpretsandexecutesonthespecificOS,abstractingawayOS

Javaispowerfulduetoitsplatformindependence,object-orientednature,richstandardlibrary,performancecapabilities,andstrongsecurityfeatures.1)PlatformindependenceallowsapplicationstorunonanydevicesupportingJava.2)Object-orientedprogrammingpromotesmodulara

The top Java functions include: 1) object-oriented programming, supporting polymorphism, improving code flexibility and maintainability; 2) exception handling mechanism, improving code robustness through try-catch-finally blocks; 3) garbage collection, simplifying memory management; 4) generics, enhancing type safety; 5) ambda expressions and functional programming to make the code more concise and expressive; 6) rich standard libraries, providing optimized data structures and algorithms.

JavaisnotentirelyplatformindependentduetoJVMvariationsandnativecodeintegration,butitlargelyupholdsitsWORApromise.1)JavacompilestobytecoderunbytheJVM,allowingcross-platformexecution.2)However,eachplatformrequiresaspecificJVM,anddifferencesinJVMimpleme

TheJavaVirtualMachine(JVM)isanabstractcomputingmachinecrucialforJavaexecutionasitrunsJavabytecode,enablingthe"writeonce,runanywhere"capability.TheJVM'skeycomponentsinclude:1)ClassLoader,whichloads,links,andinitializesclasses;2)RuntimeDataAr

Javaremainsagoodlanguageduetoitscontinuousevolutionandrobustecosystem.1)Lambdaexpressionsenhancecodereadabilityandenablefunctionalprogramming.2)Streamsallowforefficientdataprocessing,particularlywithlargedatasets.3)ThemodularsystemintroducedinJava9im

Javaisgreatduetoitsplatformindependence,robustOOPsupport,extensivelibraries,andstrongcommunity.1)PlatformindependenceviaJVMallowscodetorunonvariousplatforms.2)OOPfeatureslikeencapsulation,inheritance,andpolymorphismenablemodularandscalablecode.3)Rich

The five major features of Java are polymorphism, Lambda expressions, StreamsAPI, generics and exception handling. 1. Polymorphism allows objects of different classes to be used as objects of common base classes. 2. Lambda expressions make the code more concise, especially suitable for handling collections and streams. 3.StreamsAPI efficiently processes large data sets and supports declarative operations. 4. Generics provide type safety and reusability, and type errors are caught during compilation. 5. Exception handling helps handle errors elegantly and write reliable software.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
