search
HomeBackend DevelopmentC++Switch Statement Oddities

Switch Statement Oddities

Sep 06, 2024 am 06:51 AM

Switch Statement Oddities

Introduction

The grammar for the switch statement in C is simply:

        switch ( expression ) statement

C++ inherited C’s switch and added the ability to add an optional init-statement, but that’s not central to this article.

Notice what’s not there: there’s no mention of either case or default. Those are specified elsewhere in the grammar. This means the correctness of a switch statement is enforced semantically rather than syntactically. The consequences of this are that statement:

  1. Can be any statement.
  2. Is treated exactly the same as any other statement.
  3. May also contain zero or more case labels and at most one default label.

Fall-Through

One of the controversial features of C is that, within a switch statement, cases “fall through” to the next case (if any). For example, given a value of 'a' for the variable c, code such as:

switch ( c ) {
    case 'a':
        printf( "apple\n" );
    case 'b':
        printf( "banana\n" );
}

will print apple and banana because after matching 'a' and printing apple, execution simply “falls through” into the 'b' case. This is an odd result of consequence #2 above since, outside of a switch, consecutive statements naturally “fall through” from one to the next. Inside of a switch between cases, this isn’t what you want most of the time, so you can use a break (or continue if inside a loop, return, or goto).

Most compilers will allow you to request to be warned when code falls through to a next case. As of C23 or C++17, you can include the [[fallthrough]] attribute to tell the compiler that a fall-through is intentional and not to warn you:

switch ( how_good ) {
    case VERY_GOOD:
        printf( "very " );
        [[fallthrough]];
    case GOOD:
        printf( "good\n" );
        break;
}

Perhaps the most famous example of where fall-through is useful is Duff’s device. You can read the details of it there, but the bottom line is that code such as (rewritten in modern C):

void send( short *to, short const *from, size_t count ) {
    size_t n = (count + 7) / 8;
    switch ( count % 8 ) {
        case 0: do { *to = *from++;
        case 7:      *to = *from++;
        case 6:      *to = *from++;
        case 5:      *to = *from++;
        case 4:      *to = *from++;
        case 3:      *to = *from++;
        case 2:      *to = *from++;
        case 1:      *to = *from++;
                } while ( --n > 0 );
    }
}

is perfectly legal as a result of consequence #3, that is the fact that the do loop is inside a switch allows any statement to have a case label.

Single Statement

With switch, the statement is invariably a compound-statement, that is a sequence of statements enclosed in {}, but it can alternatively be a single statement:

bool check_n_args( int n_args ) {
    switch ( n_args )              // no { here
        case 0:
        case 1:
        case 2:
            return true;
                                   // no } here
    fprintf( stderr, "error: args must be 0-2\n" );
    return false;
}

Since there is only the single statement of return true, the {} aren’t necessary just as they’d not be necessary after an if, do, else, for, or while either.

Aside from the fact that the above is an alternate way of writing:

    if ( n_args >= 0 && n_args 



<p>(except that the expression is evaluated only once) there’s no legitimate reason for ever using a single statement with a switch, so I’d never recommend doing it.  It’s just an odd result of consequence #1 above.</p>

<h2>
  
  
  default Not Last
</h2>

<p>When a switch has a default, it’s invariably last, but it can actually be anywhere within the switch:<br>
</p>

<pre class="brush:php;toolbar:false">    switch ( n_args ) {
        default:
            fprintf( stderr, "error: args must be 0-2\n" );
            return false;
        case 0:
            // ...

In terms of performance, the position of default (or indeed the order of the cases) doesn’t matter. The only technical reason for not having default last would be if you wanted to have execution fall-through into the next case. Any other reason would be purely stylistic, e.g., you want to handle the common case first followed by special cases.

Statements Before the First Case

It’s also possible to have statements before the first case, for example:

switch ( n_args ) {
        printf( "never executed\n" );
    case 0:
        // ...

Such statements are never executed. Most compilers will warn about this. As far as I know, there’s no reason for ever having statements before the first case.

However, it’s marginally useful to have declarations before the first case, for example:

switch ( n_args ) {
        int i;
    case 0:
        i = f();
        // ...
        break;
    case 1:
        i = g();
        // ...
        break;
}

This is marginally useful when a variable is used only within the scope of the switch by one or more cases. Note that you should not initialize such variables like:

switch ( n_args ) {
        int i = 0;  // WRONG: do _not_ initialize!
    // ...

because, even though the variable is declared, its initialization code is never executed (just like the printf() in a previous example is never executed), so the code is deceptive. Instead, you must initialize such variables in each case that uses them.

Even though simple declarations (without initialization) are not executable code, some compilers will still (erroneously, IMHO) warn about them. Therefore, such declarations are not useful.

If you really want declarations only within the scope of a switch, you can either put them in the first case or only in the case(s) that use them. However, prior to C23, declarations immediately after a label are not allowed:

switch ( n_args ) {
    case 0:
        int i;       // error (pre-C23)
        // ...

To work around that restriction, you can add {} for a case:

    case 0: {
        int i;       // OK now (all C versions)
        // ...
    }

A break-able Block

If you have a long block of code that you want to jump to the end of, there are a few ways to do it:

  1. A sequence of if-else statements; or;
  2. A sequence of if-goto statements; or;
  3. A do { ... } while (0) statement with breaks.

Each has its trade-offs. Another way would be:

#define BLOCK  switch (0) default:

void f() {
    BLOCK {
        // ...
        if ( condition_1 )
            break;
        // ... lots more code ...
    }

    // "break" above jumps here

Hence, it’s most similar to do { ... } while (0), but without having to put the while (0) at the end.

Conclusion

The apparent simplicity of the switch statement in C (and C++) is deceptive in that it allows several odd ways to write code using them, some useful, some not. The most useful is Duff’s device for loop unrolling.

The above is the detailed content of Switch Statement Oddities. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
C# vs. C  : Memory Management and Garbage CollectionC# vs. C : Memory Management and Garbage CollectionApr 15, 2025 am 12:16 AM

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

Beyond the Hype: Assessing the Relevance of C   TodayBeyond the Hype: Assessing the Relevance of C TodayApr 14, 2025 am 12:01 AM

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

The C   Community: Resources, Support, and DevelopmentThe C Community: Resources, Support, and DevelopmentApr 13, 2025 am 12:01 AM

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# vs. C  : Where Each Language ExcelsC# vs. C : Where Each Language ExcelsApr 12, 2025 am 12:08 AM

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

The Continued Use of C  : Reasons for Its EnduranceThe Continued Use of C : Reasons for Its EnduranceApr 11, 2025 am 12:02 AM

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The Future of C   and XML: Emerging Trends and TechnologiesThe Future of C and XML: Emerging Trends and TechnologiesApr 10, 2025 am 09:28 AM

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

Modern C   Design Patterns: Building Scalable and Maintainable SoftwareModern C Design Patterns: Building Scalable and Maintainable SoftwareApr 09, 2025 am 12:06 AM

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C   Multithreading and Concurrency: Mastering Parallel ProgrammingC Multithreading and Concurrency: Mastering Parallel ProgrammingApr 08, 2025 am 12:10 AM

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool