search
HomeBackend DevelopmentPython TutorialStreamlit Part Write and Text Elements

Streamlit Part Write and Text Elements

Getting Started with Streamlit: A Beginner's Guide

Code can be found here: GitHub - jamesbmour/blog_tutorials:

Video version of blog can be found here: https://youtu.be/EQcqNW7Nw7M

Introduction

Streamlit is an open-source app framework that allows you to create beautiful, interactive web applications with minimal effort. If you’re a data scientist, machine learning engineer, or anyone working with data, Streamlit is the perfect tool to turn your Python scripts into interactive apps quickly. In this tutorial, we will dive into the basics of Streamlit by exploring some of its powerful features, such as st.write(), magic commands, and text elements.

Let’s get started by building a simple app to demonstrate these functionalities!

Setting Up Your Streamlit Environment

Before we jump into the code, make sure you have Streamlit installed. If you haven't installed it yet, you can do so with the following command:

pip install streamlit

Now, let’s start coding our first Streamlit app.

Building Your First Streamlit App

1. Adding a Title to Your App

Streamlit makes it incredibly easy to add titles and headings to your app. The st.title() function allows you to display a large title at the top of your application, which serves as the main heading.

import streamlit as st

st.title("Introduction to Streamlit: Part 1")

This will display a large, bold title at the top of your app.

Streamlit Write Elements

Using st.write() for Versatile Output

The st.write() function is one of the most versatile functions in Streamlit. You can use it to display almost anything, including text, data frames, charts, and more—all with a single line of code.

Displaying a DataFrame

Let's start by displaying a simple DataFrame using st.write().

import pandas as pd

df = pd.DataFrame({
    "Column 1": [1, 2, 3, 4],
    "Column 2": [10, 20, 30, 40]
})

st.write("DataFrame using st.write() function")
st.write(df)

This code creates a DataFrame with two columns and displays it directly in your app. The beauty of st.write() is that it automatically formats the DataFrame into a neat table, complete with scroll bars if needed.

Displaying Markdown Text

Another cool feature of st.write() is its ability to render Markdown text. This allows you to add formatted text, such as headers, subheaders, and paragraphs, with ease.

markdown_txt = (
    "### This is a Markdown Header\\n"
    "#### This is a Markdown Subheader\\n"
    "This is a Markdown paragraph.\\n"
)
st.write(markdown_txt)

With just a few lines of code, you can add rich text to your app.

Streaming Data with st.write_stream()

Streamlit also allows you to stream data to your app in real-time using the st.write_stream() function. This is particularly useful for displaying data that updates over time, such as sensor readings or live analytics.

import time

st.write("## Streaming Data using st.write_stream() function")
stream_btn = st.button("Click Button to Stream Data")

TEXT = """
# Stream a generator, iterable, or stream-like sequence to the app.
"""

def stream_data(txt="Hello, World!"):
    for word in txt.split(" "):
        yield word + " "
        time.sleep(0.01)

if stream_btn:
    st.write_stream(stream_data(TEXT))

In this example, when the button is clicked, the app will start streaming data word by word from the TEXT string, simulating real-time data updates.

Streamlit Text Elements

In addition to data streaming, Streamlit provides several text elements to enhance the presentation of your app.

Headers and Subheaders

You can easily add headers and subheaders using st.header() and st.subheader():

st.header("This is a Header")
st.subheader("This is a Subheader")

These functions help structure your content, making your app more organized and visually appealing.

Captions

Captions are useful for adding small notes or explanations. You can add them using st.caption():

st.caption("This is a caption")

Displaying Code

If you want to display code snippets in your app, you can use st.code():

code_txt = """
import pandas as pd
import streamlit as st

st.title("Streamlit Tutorials")
for i in range(10):
    st.write(i)
"""
st.code(code_txt)

This will display the code in a nicely formatted, syntax-highlighted block.

Displaying Mathematical Expressions

For those who need to include mathematical equations, Streamlit supports LaTeX:

st.latex(r"e = mc^2")
st.latex(r"\\int_a^b x^2 dx")

These commands will render LaTeX equations directly in your app.

Adding Dividers

To separate different sections of your app, you can use st.divider():

st.write("This is some text below the divider.")
st.divider()
st.write("This is some other text below the divider.")

Dividers add a horizontal line between sections, helping to break up the content visually.

Conclusion

In this introductory tutorial, we covered the basics of Streamlit, including how to use st.write() to display data and text, and how to stream data using st.write_stream(). We also explored various text elements to enhance the structure and readability of your app.

Streamlit makes it incredibly easy to create interactive web applications with just a few lines of code. Whether you're building dashboards, data exploration tools, or any other data-driven app, Streamlit provides the tools you need to get started quickly.

In the next tutorial, we’ll dive deeper into widgets and interactivity features in Streamlit. Stay tuned!

이 튜토리얼이 도움이 되었다면 공유하고 더 많은 콘텐츠를 구독하는 것을 잊지 마세요. 다음 포스팅에서 만나요!

내 글을 응원하고 싶거나 맥주 한잔 대접하고 싶다면 https://buymeacoffee.com/bmours

The above is the detailed content of Streamlit Part Write and Text Elements. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to solve the permissions problem encountered when viewing Python version in Linux terminal?How to solve the permissions problem encountered when viewing Python version in Linux terminal?Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python?How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python?Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to Create Command-Line Interfaces (CLIs) with Python?How to Create Command-Line Interfaces (CLIs) with Python?Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Explain the purpose of virtual environments in Python.Explain the purpose of virtual environments in Python.Mar 19, 2025 pm 02:27 PM

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.