Graphene & Batteries
Battery technology is quickly evolving, with dozens of competing alternative chemistries challenging the dominance of lithium-ion batteries
Graphene is a promising material for use in batteries due to its high electrical conductivity and thermal conductivity. A recent discovery by researchers at Swansea University, in collaboration with Wuhan University of Technology and Shenzhen University, could pave the way for the use of graphene in lithium-ion batteries, helping to keep them as the dominant battery technology over alternative chemistries, including graphene-based batteries.
The researchers' publication in Nature Chemical Engineering details the first successful protocol for fabricating defect-free graphene foils on a commercial scale. The method can be used to create graphene foils in lengths ranging from meters to kilometers. In a laboratory setting not designed for mass production, they managed to create a 200-meter-long graphene foil with a thickness of 17 micrometers. The foil is also highly resistant and was demonstrated to retain high electrical conductivity even after being bent over 100,000 times, making it suitable for use in flexible electronics, industrial manufacturing, and other applications where the graphene is used to deploy powerful currents.
The application that the researchers focused on in their study is the use of the graphene foil as a current collector in lithium-ion batteries. Lithium-ion batteries are vulnerable to a key risk, called thermal runaway, which happens when excessive heat accumulates in a part of the battery, leading to battery failure with dangerous fires or explosions. This issue is one of the key reasons many researchers and battery companies are looking beyond lithium-ion with alternative chemistries like sodium-ion. Many alternative solutions are being explored, for example, gel electrolytes.
Thermal runaway mostly happens at the battery's current collectors, where the most power is concentrated. In current lithium-ion batteries, current collectors are usually made of aluminum or copper. The graphene current collectors developed by the research with their graphene foil can display a thermal conductivity as high as 1,400.8 W m−1 K−1. For reference, this is almost 10x higher than copper and aluminum-based current collectors.
Because the graphene foil shows a very fast heat dissipation, it eliminates the risk of local heat concentration when the current is flowing. In turn, this removes the risks of aluminothermic and hydrogen-evolution reactions which are the critical steps leading to propagation of the battery failure and fire hazard.
“Our dense, aligned graphene structure provides a robust barrier against the formation of flammable gases and prevents oxygen from permeating the battery cells, which is crucial for avoiding catastrophic failures,”
Dr Jinlong Yang, co-lead author
Maybe more importantly, the method is already proven to be deployable with mass manufacturing of the graphene foil. So it could be quickly integrated into existing battery manufacturing processes.
“This is a significant step forward for battery technology. Our method allows for the production of graphene current collectors at a scale and quality that can be readily integrated into commercial battery manufacturing. This not only improves battery safety by efficiently managing heat but also enhances energy density and longevity.”
Dr Rui Tan, co-lead author
The researchers are already looking at ways to reduce the thickness of the graphene foils and further enhance their mechanical properties. They are also looking at how the graphene foil could help design better flow batteries and sodium-ion batteries, in collaboration with another research team at Swansea University, under Pr. Serena Margodonna’s leadership.
We previously discussed honeycomb lithium-ion batteries that remove the risk of battery failure from dendrite growth. If thermal runaway also can be suppressed thanks to graphene foil, this could make lithium-ion batteries much more safe and durable than the current version.
This overall follows the pattern of most innovations in one niche of battery technology to be usable in other designs, helping feed the quick progress of the industry.
(You can also learn more about battery technology in our articles “The Future of Mobility – Battery Tech” and “The Future Of Energy Storage – Utility-Scale Batteries Tech”.)
The above is the detailed content of Graphene & Batteries. For more information, please follow other related articles on the PHP Chinese website!

Altcoins are showing fresh signs of life following Trump's 90-day tariff pause, and three names in particular—XRP, HYPE, and ONDO—are catching investor attention.

What sounds better: winning big and then waiting days for the money to arrive, or playing at crypto casinos with instant withdrawal?

This new financial instrument would track the token's market price, with a third-party custodian holding the underlying AVAX

This guide is for informational purposes only. The token(s) discussed as potential rewards may not have launched yet or may never launch.

n Humanitarian Alliance Launches With 12 Founding Members to Harness Bitcoin's Power for Good

CINCINNATI, OH — A 73-year-old Delhi Township woman has regained more than $35,000 lost in a cryptocurrency scam, thanks to the quick action of local police and a specialized unit within the Ohio Bureau of Criminal Investigation (BCI)

Remittix, a new DeFi token, can be one of the best cryptos to put your money in this year, according to most.

After a long-running streak of breaking down from support levels, Dogecoin (DOGE) is set to reverse the trend.

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Notepad++7.3.1
Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.