search
HomeTechnology peripheralsAINew work from the author of Mamba: Distilling Llama3 into a hybrid linear RNN

The key to Transformer’s great success in the field of deep learning is the attention mechanism. The attention mechanism allows Transformer-based models to focus on parts relevant to the input sequence, achieving better context understanding. However, the disadvantage of the attention mechanism is that the computational overhead is high, which increases quadratically with the input size, making it difficult for the Transformer to handle very long texts.

Some time ago, the emergence of Mamba broke this situation, which can achieve linear expansion as the context length increases. With the release of Mamba, these state space models (SSMs) can already match or even surpass Transformer at small to medium scale, while maintaining linear scalability with sequence length, which gives Mamba favorable deployment characteristics.

Simply put, Mamba first introduces a simple but effective selection mechanism, which can re-parameterize SSM according to the input, allowing the model to retain necessary information indefinitely while filtering out irrelevant information. and related data.

Recently, a paper titled "The Mamba in the Llama: Distilling and Accelerating Hybrid Models" proves that by reusing the weights of the attention layer, large transformers can be distilled into large hybrid linear RNNs, just Minimal extra computation while retaining most of its build quality.

The resulting hybrid model, which contains a quarter of the attention layer, achieves comparable performance to the original Transformer in the chat benchmark, and outperforms using data in the chat benchmark and general benchmarks. An open source hybrid Mamba model trained from scratch by trillion tokens. Additionally, the study proposes a hardware-aware speculative decoding algorithm that speeds up inference for Mamba and hybrid models.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Paper address: https://arxiv.org/pdf/2408.15237

The best performing model of this study is from Llama3-8B-Instruct Distilled, it achieved a length-controlled winning rate of 29.61 on AlpacaEval 2 relative to GPT-4, and a winning rate of 7.35 on MT-Bench, surpassing the best instruction-adjusted linear RNN model.

Methods

Knowledge Distillation (KD) is a model compression technique used to transfer knowledge from a large model (teacher model) to a smaller model (student model) model), which aims to train the student network to imitate the behavior of the teacher network. The research aims to distill the Transformer so that its performance is comparable to the original language model.

This study proposes a multi-stage distillation method that combines progressive distillation, supervised fine-tuning and directional preference optimization. Compared with ordinary distillation, this method can achieve better perplexity and downstream evaluation results.

The study assumes that most of the knowledge from the Transformer is retained in the MLP layer transferred from the original model, and focuses on the fine-tuning and alignment steps of the distilled LLM. During this phase, the MLP layer remains frozen and the Mamba layer is trained.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

This study believes that there are some natural connections between linear RNN and attention mechanism. The attention formula can be linearized by removing softmax:

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

But linearizing attention will lead to degradation of model capabilities. To design an efficient distilled linear RNN, this study approaches the original Transformer parameterization as closely as possible while extending the capacity of the linear RNN in an efficient manner. This study does not attempt to have the new model capture the precise original attention function, but instead uses a linearized form as a starting point for distillation.

As shown in Algorithm 1, this study feeds the standard Q, K, V heads from the attention mechanism directly into the Mamba discretization and then applies the resulting linear RNN. This can be thought of as using linear attention for coarse initialization and allows the model to learn richer interactions through extended hidden states.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

This study directly replaces the Transformer attention head with a fine-tuned linear RNN layer, keeping the Transformer MLP layer unchanged and not training them. This approach also needs to handle other components, such as grouped query attention that shares keys and values ​​across heads. The research team noted that this architecture, unlike those used in many Mamba systems, allows this initialization to replace any attention blocks with linear RNN blocks.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

The research also proposes a new algorithm for linear RNN speculative decoding using hardware-aware multi-step generation.

Algorithm 2 and Figure 2 show the complete algorithm. This approach only keeps an RNN hidden state in the cache for verification and lazily advances it based on the success of the multi-step kernel. Since the distillation model contains transformer layers, this study also extends speculative decoding to an Attention/RNN hybrid architecture. In this setup, the RNN layer performs verification according to Algorithm 2, while the Transformer layer only performs parallel verification.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

To verify the effectiveness of this method, the study used Mamba 7B and Mamba 2.8B as target models for speculation. The results are shown in Table 1.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Figure 3 shows the performance characteristics of the multi-step kernel itself.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Acceleration on H100 GPU. The algorithm proposed in this study shows strong performance on Ampere GPU, as shown in Table 1 above. But there are huge challenges on the H100 GPU. This is mainly because GEMM operations are too fast, which makes the overhead caused by caching and recomputing operations more noticeable. Indeed, a simple implementation of the studied algorithm (using multiple different kernel calls) achieved considerable speedup on the 3090 GPU, but no speedup at all on the H100.

Experiments and results

This study uses two LLM chat models for experiments: Zephyr-7B is fine-tuned based on the Mistral 7B model, and Llama- 3 Instruct 8B. For the linear RNN model, this study uses a hybrid version of Mamba and Mamba2 with attention layers of 50%, 25%, 12.5%, and 0% respectively, and calls 0% a pure Mamba model. Mamba2 is an architecture variant of Mamba designed primarily for recent GPU architectures.

Evaluation on the Chat Benchmark

Table 2 shows the performance of the model on the Chat Benchmark. The main model compared is the large Transformer model. The results show:

The distilled hybrid Mamba model (50%) achieves similar scores to the teacher model in the MT benchmark, and is slightly better than the teacher model in the AlpacaEval benchmark in terms of LC win rate and overall win rate. .

The performance of the distilled hybrid Mamba (25% and 12.5%) is slightly worse than the teacher model on the MT benchmark, but even with more parameters in AlpcaaEval it still outperforms some large Transformers.

The accuracy of the distilled pure (0%) Mamba model does drop significantly.

It is worth noting that the distilled hybrid model performs better than Falcon Mamba, which is trained from scratch using more than 5T tokens.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

General benchmark evaluation

Zero-sample evaluation. Table 3 shows the zero-shot performance of Mamba and Mamba2 distilled from different teacher models on the LM Eval benchmark. The hybrid Mamba-Llama3 and Mamba2-Llama3 models distilled from Llama-3 Instruct 8B performed better compared to the open source TRI Mamba and Nvidia Mamba models trained from scratch.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Benchmark evaluation. Table 4 shows that the performance of the distilled hybrid model matches the best open source linear RNN model on Open LLM Leaderboard, while outperforming the corresponding open source instruction model in GSM8K and CRUX.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Hybrid Speculative Decoding

For the 50% and 25% distillation models, compared to the non-speculative baseline, this study Achieved over 1.8x speedup on Zephyr-Hybrid.

Experiments also show that the 4-layer draft model trained in this study achieves a higher reception rate, but due to the increase in the size of the draft model, the additional overhead also becomes larger. In subsequent work, this research will focus on scaling down these draft models.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Comparison with other distillation methods: Table 6 (left) compares the perplexity of different model variants. The study performed distillation within an epoch using Ultrachat as a seed prompt and compared perplexity. It turns out that removing more layers makes the situation worse. The study also compared the distillation method to previous baselines and found that the new method showed smaller degradation, while the Distill Hyena model was trained on the WikiText dataset using a much smaller model and showed larger confusion degree of degradation.

Table 6 (right) shows that using SFT or DPO alone does not yield much improvement, while using SFT + DPO yields the best score.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Table 7 compares ablation studies for several different models. Table 7 (left) shows the distillation results using various initializations, and Table 7 (right) shows the smaller gains from progressive distillation and interleaving attention layers with Mamba.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Table 8 compares the performance of hybrid models using two different initialization methods: the results confirm that the initialization of attention weights is crucial.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Table 9 compares the performance of models with and without Mamba blocks. Models with Mamba blocks perform significantly better than models without Mamba blocks. This confirms that adding the Mamba layer is crucial and that the performance improvement is not solely due to the remaining attention mechanism.

Mamba作者新作:将Llama3蒸馏成混合线性 RNN

Interested readers can read the original text of the paper to learn more about the research content.

The above is the detailed content of New work from the author of Mamba: Distilling Llama3 into a hybrid linear RNN. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议Dec 21, 2023 pm 03:25 PM

PowerInfer提高了在消费级硬件上运行AI的效率上海交大团队最新推出了超强CPU/GPULLM高速推理引擎PowerInfer。PowerInfer和llama.cpp都在相同的硬件上运行,并充分利用了RTX4090上的VRAM。这个推理引擎速度有多快?在单个NVIDIARTX4090GPU上运行LLM,PowerInfer的平均token生成速率为13.20tokens/s,峰值为29.08tokens/s,仅比顶级服务器A100GPU低18%,可适用于各种LLM。PowerInfer与

思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了Sep 05, 2023 pm 05:53 PM

要让大型语言模型(LLM)充分发挥其能力,有效的prompt设计方案是必不可少的,为此甚至出现了promptengineering(提示工程)这一新兴领域。在各种prompt设计方案中,思维链(CoT)凭借其强大的推理能力吸引了许多研究者和用户的眼球,基于其改进的CoT-SC以及更进一步的思维树(ToT)也收获了大量关注。近日,苏黎世联邦理工学院、Cledar和华沙理工大学的一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为LLM构建推理过程的能力不断得到提升,研究者也通

FATE 2.0发布:实现异构联邦学习系统互联FATE 2.0发布:实现异构联邦学习系统互联Jan 16, 2024 am 11:48 AM

FATE2.0全面升级,推动隐私计算联邦学习规模化应用FATE开源平台宣布发布FATE2.0版本,作为全球领先的联邦学习工业级开源框架。此次更新实现了联邦异构系统之间的互联互通,持续增强了隐私计算平台的互联互通能力。这一进展进一步推动了联邦学习与隐私计算规模化应用的发展。FATE2.0以全面互通为设计理念,采用开源方式对应用层、调度、通信、异构计算(算法)四个层面进行改造,实现了系统与系统、系统与算法、算法与算法之间异构互通的能力。FATE2.0的设计兼容了北京金融科技产业联盟的《金融业隐私计算

复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来Sep 23, 2023 am 09:01 AM

近期,复旦大学自然语言处理团队(FudanNLP)推出LLM-basedAgents综述论文,全文长达86页,共有600余篇参考文献!作者们从AIAgent的历史出发,全面梳理了基于大型语言模型的智能代理现状,包括:LLM-basedAgent的背景、构成、应用场景、以及备受关注的代理社会。同时,作者们探讨了Agent相关的前瞻开放问题,对于相关领域的未来发展趋势具有重要价值。论文链接:https://arxiv.org/pdf/2309.07864.pdfLLM-basedAgent论文列表:

吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了Mar 01, 2024 pm 10:55 PM

大型语言模型(LLM)被广泛应用于需要多个链式生成调用、高级提示技术、控制流以及与外部环境交互的复杂任务。尽管如此,目前用于编程和执行这些应用程序的高效系统却存在明显的不足之处。研究人员最近提出了一种新的结构化生成语言(StructuredGenerationLanguage),称为SGLang,旨在改进与LLM的交互性。通过整合后端运行时系统和前端语言的设计,SGLang使得LLM的性能更高、更易控制。这项研究也获得了机器学习领域的知名学者、CMU助理教授陈天奇的转发。总的来说,SGLang的

大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」Feb 02, 2024 pm 09:33 PM

将不同的基模型象征为不同品种的狗,其中相同的「狗形指纹」表明它们源自同一个基模型。大模型的预训练需要耗费大量的计算资源和数据,因此预训练模型的参数成为各大机构重点保护的核心竞争力和资产。然而,与传统软件知识产权保护不同,对预训练模型参数盗用的判断存在以下两个新问题:1)预训练模型的参数,尤其是千亿级别模型的参数,通常不会开源。预训练模型的输出和参数会受到后续处理步骤(如SFT、RLHF、continuepretraining等)的影响,这使得判断一个模型是否基于另一个现有模型微调得来变得困难。无

220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升Oct 23, 2023 pm 03:13 PM

IBM再度发力。随着AI系统的飞速发展,其能源需求也在不断增加。训练新系统需要大量的数据集和处理器时间,因此能耗极高。在某些情况下,执行一些训练好的系统,智能手机就能轻松胜任。但是,执行的次数太多,能耗也会增加。幸运的是,有很多方法可以降低后者的能耗。IBM和英特尔已经试验过模仿实际神经元行为设计的处理器。IBM还测试了在相变存储器中执行神经网络计算,以避免重复访问RAM。现在,IBM又推出了另一种方法。该公司的新型NorthPole处理器综合了上述方法的一些理念,并将其与一种非常精简的计算运行

何恺明和谢赛宁团队成功跟随解构扩散模型探索,最终创造出备受赞誉的去噪自编码器何恺明和谢赛宁团队成功跟随解构扩散模型探索,最终创造出备受赞誉的去噪自编码器Jan 29, 2024 pm 02:15 PM

去噪扩散模型(DDM)是目前广泛应用于图像生成的一种方法。最近,XinleiChen、ZhuangLiu、谢赛宁和何恺明四人团队对DDM进行了解构研究。通过逐步剥离其组件,他们发现DDM的生成能力逐渐下降,但表征学习能力仍然保持一定水平。这说明DDM中的某些组件对于表征学习的作用可能并不重要。针对当前计算机视觉等领域的生成模型,去噪被认为是一种核心方法。这类方法通常被称为去噪扩散模型(DDM),通过学习一个去噪自动编码器(DAE),能够通过扩散过程有效地消除多个层级的噪声。这些方法实现了出色的图

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment