search
Weka in JavaAug 30, 2024 pm 04:28 PM
java

Weka is abbreviated as Waikato Environment for Knowledge Analysis and it is also the name of a bird in New Zealand called Weka. Weka is an Open Source library for Machine-Learning. It is a Java-based version; it is one of the no-code tools which are resourceful and powerful. Weka in beginning developed and started in the year of 1997 and now it is used in various application areas, mainly it is used for educational intention and do researches. Essentially it can be used to implement the art of Machine Learning models which supports various file formats.

Start Your Free Software Development Course

Web development, programming languages, Software testing & others

What is weka java?

Weka is a group of Machine Learning algorithms for developing data mining tasks. It encloses tools for Clustering, Data Preparation, Regression, Classification, Visualization, and Association rule mining. Weka is a collected group of algorithms of Machine Learning for the Data Mining tasks. Those algorithms will be applied to the Dataset directly otherwise from the Java-Code.

In the earlier version, Weka was first and foremost designed as the tool to analyze the data from agricultural domains, but now it is a fully Java-based version (Weka 3), recently it is used for various application areas, specifically for the educational purpose and research-oriented.

How to use weka java?

By using Weka, we need to install weka based on your Operating System. Once downloading the archive to extract it you will get the jar file like weka.jar. It contains the entire class files required to developing an application like weka API and so on.

After the complete installation part, we need to include the jar as a classpath in our implementation. The classpath describes that the JDK regards the external class files in external libraries. While adding the classpath it is suggested to use – cp option of commands in JDK. When we work on any of the frameworks then the classpath can be included for the relevant manifest file.

Type of platform

Weka is an Open Source library for Machine-Learning technology. It is a Java-based version; it is one of the no-code tools which are resourceful and powerful. The precondition is that we need to have Java 8.0 installed in your machine. We can install Weka on any kind of platform by following such instructions as follows, after the completion of weka installation you need to include standard interfaces and data processing techniques. Let’s see the following techniques,

  1. Data Pre-Processing: Once loading the dataset, the Weka makes it possible to rapidly investigate its instances and attributes. In addition, there are various filtering techniques are available, let’s see one example – to convert the data into a numerical way to perform the feature selection to reduce the dimension in the dataset, like to speed up the timings and performance of training.
  2. Regression Algorithms and Classification: In the classification and regression algorithms there are a set of various algorithms like Decision Trees, Gaussian Naive Bayes, K-Nearest Neighbour, Linear Regression Variants, and Ensembles Techniques.
  3. Clustering: The Clustering technique is used in organizing to identify the essential categories of our data in an invalid way. Most of the examples algorithms make available with the weka collection are the K-Means Clustering and Expectation Maximisation.
  4. Data Visualisation: The data visualization technique is an integrated data visualization which promptly predicts the correlations between the represented machine learning patterns and features like K-Means Clustering and Decision Trees.
  5. Discovering Associations: The discovery association which discovers the basic rules in the dataset, in order to get easier identifiable patterns and also the connections involving various features.

Requirements for weka java

The basic requirement for weka java is that we have in any case Java 1.7 installed. To download and install the weka choose the latest version of weka for your system, it requires at least Java 1.7.

Let’s see the following which shows the minimum version of Java required to execute the particular version of Weka. The up-to-date releases of Weka need Java 8 or later. In order to avoid the improper scaling of Weka’s GUI (Graphical User Interfaces) in your Windows system, you have to make use of Java 9 pr later versions for the display with High Pixel Density (HiDPI).

Weka in Java

Advantages

The advantages of Weka consist of the following things,

  • We can at free availability under the GNU General Public License
  • It’s easy to use because of its GUI (Graphical User Interface).
  • It is portable because of the full implementation in Java Programming Language and it’s executed on any of the Modern Computing Platform.
  • There is a wide-ranging of collected Data Pre-Processing and Modelling Techniques.

Model generator class in the example

Let’s see the model generator class, to generating a model we need to use Multi-Layer Perception called Neural Networks to categorize in iris 2D dataset. We can make use of the default value of the Neural Network Learning Process or we can set it manually through the setter methods.

There are several Model Generator Class, Lets see the following models as follows,

Weka in Java

Conclusion

In this article we have come to known about the Weka, it is an influential tool. In recent times it is used for various application areas, specifically for educational purposes and research-oriented. Hope the article helps you to understand the base things in Weka.

The above is the detailed content of Weka in Java. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
带你搞懂Java结构化数据处理开源库SPL带你搞懂Java结构化数据处理开源库SPLMay 24, 2022 pm 01:34 PM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

Java集合框架之PriorityQueue优先级队列Java集合框架之PriorityQueue优先级队列Jun 09, 2022 am 11:47 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

完全掌握Java锁(图文解析)完全掌握Java锁(图文解析)Jun 14, 2022 am 11:47 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

一起聊聊Java多线程之线程安全问题一起聊聊Java多线程之线程安全问题Apr 21, 2022 pm 06:17 PM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

Java基础归纳之枚举Java基础归纳之枚举May 26, 2022 am 11:50 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

详细解析Java的this和super关键字详细解析Java的this和super关键字Apr 30, 2022 am 09:00 AM

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

java中封装是什么java中封装是什么May 16, 2019 pm 06:08 PM

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

Java数据结构之AVL树详解Java数据结构之AVL树详解Jun 01, 2022 am 11:39 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于平衡二叉树(AVL树)的相关知识,AVL树本质上是带了平衡功能的二叉查找树,下面一起来看一下,希望对大家有帮助。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor