Home >Java >javaTutorial >Java program to remove duplicates from a given stack
In this article, we’ll explore two methods to remove duplicate elements from a stack in Java. We’ll compare a straightforward approach with nested loops and a more efficient method using a HashSet. The goal is to demonstrate how to optimize duplicate removal and to evaluate the performance of each approach.
Write a Java program to remove the duplicate element from the stack.
Input
Stack<Integer> data = initData(10L);
Output
Unique elements using Naive Approach: [1, 4, 3, 2, 8, 7, 5] Time spent for Naive Approach: 18200 nanoseconds Unique elements using Optimized Approach: [1, 4, 3, 2, 8, 7, 5] Time spent for Optimized Approach: 34800 nanoseconds
To remove duplicates from a given stack, we have 2 approaches −
Below is the Java program first builds a random stack and then creates a duplicate of it for further use −
private static Stack initData(Long size) { Stack stack = new Stack < > (); Random random = new Random(); int bound = (int) Math.ceil(size * 0.75); for (int i = 0; i < size; ++i) { stack.add(random.nextInt(bound) + 1); } return stack; } private static Stack < Integer > manualCloneStack(Stack < Integer > stack) { Stack < Integer > newStack = new Stack < > (); for (Integer item: stack) { newStack.push(item); } return newStack; }
initData
helps create a Stack with a specified size and random elements ranging from 1 to 100.
manualCloneStack
helps generate data by copying data from another stack, using it for performance comparison between the two ideas.
Following are the step to remove duplicates from a given stack using Naïve approach −
Below is the Java program to remove duplicates from a given stack using Naïve approach −
public static Stack idea1(Stack stack) { long start = System.nanoTime(); Stack resultStack = new Stack < > (); while (!stack.isEmpty()) { int element = stack.pop(); if (!resultStack.contains(element)) { resultStack.add(element); } } System.out.println("Time spent for idea1 is %d nanosecond".formatted(System.nanoTime() - start)); return resultStack; }
For Naive approach, we use
<code>while (!stack.isEmpty())</code>to handle the first loop to travel through all elements in the stack, and the second loop is
<pre class="brush:php;toolbar:false">resultStack.contains(element)</pre>
to check if the element is already present.Following are the step to remove duplicates from a given stack using optimized approach −
Below is the Java program to remove duplicates from a given stack using HashSet −
public static Stack<Integer> idea2(Stack<Integer> stack) { long start = System.nanoTime(); Set<Integer> seen = new HashSet<>(); Stack<Integer> tempStack = new Stack<>(); while (!stack.isEmpty()) { int element = stack.pop(); if (!seen.contains(element)) { seen.add(element); tempStack.push(element); } } System.out.println("Time spent for idea2 is %d nanosecond".formatted(System.nanoTime() - start)); return tempStack; }
For optimized approach, we use
<code>Set<Integer> seen</code>to store unique elements in a Set, take advantage of O(1) complexity when accessing a random element to reduce the calculation cost of checking if an element is present or not.
Below are the step to remove duplicates from a given stack using both approaches mentioned above −
Below is the Java program that removes duplicate elements from a stack using both approaches mentioned above −
import java.util.HashSet; import java.util.Random; import java.util.Set; import java.util.Stack; public class DuplicateStackElements { private static Stack<Integer> initData(Long size) { Stack<Integer> stack = new Stack<>(); Random random = new Random(); int bound = (int) Math.ceil(size * 0.75); for (int i = 0; i < size; ++i) { stack.add(random.nextInt(bound) + 1); } return stack; } private static Stack<Integer> cloneStack(Stack<Integer> stack) { Stack<Integer> newStack = new Stack<>(); newStack.addAll(stack); return newStack; } public static Stack<Integer> idea1(Stack<Integer> stack) { long start = System.nanoTime(); Stack<Integer> resultStack = new Stack<>(); while (!stack.isEmpty()) { int element = stack.pop(); if (!resultStack.contains(element)) { resultStack.add(element); } } System.out.printf("Time spent for idea1 is %d nanoseconds%n", System.nanoTime() - start); return resultStack; } public static Stack<Integer> idea2(Stack<Integer> stack) { long start = System.nanoTime(); Set<Integer> seen = new HashSet<>(); Stack<Integer> tempStack = new Stack<>(); while (!stack.isEmpty()) { int element = stack.pop(); if (!seen.contains(element)) { seen.add(element); tempStack.push(element); } } System.out.printf("Time spent for idea2 is %d nanoseconds%n", System.nanoTime() - start); return tempStack; } public static void main(String[] args) { Stack<Integer> data1 = initData(10L); Stack<Integer> data2 = cloneStack(data1); System.out.println("Unique elements using idea1: " + idea1(data1)); System.out.println("Unique elements using idea2: " + idea2(data2)); } }
Output
* The unit of measurement is nanosecond.
public static void main(String[] args) { Stack<Integer> data1 = initData(<number of stack size want to test>); Stack<Integer> data2 = manualCloneStack(data1); idea1(data1); idea2(data2); }
Method | 100 elements | 1000 elements |
10000 elements |
100000 elements |
1000000 elements |
Idea 1 | 693100 |
4051600 |
19026900 |
114201800 |
1157256000 |
Idea 2 | 135800 |
681400 |
2717800 |
11489400 |
36456100 |
As observed, the time running for Idea 2 is shorter than for Idea 1 because the complexity of Idea 1 is O(n²), while the complexity of Idea 2 is O(n). So, when the number of stacks increases, the time spent on calculations also increases based on it.
The above is the detailed content of Java program to remove duplicates from a given stack. For more information, please follow other related articles on the PHP Chinese website!