Home >Backend Development >Python Tutorial >Exploring New Features in PostgreSQL with Python
PostgreSQL 17 brings a host of exciting new features and enhancements that cater to developers, data scientists, and database administrators. This article will explore some of the most significant additions and improvements in PostgreSQL 17 and demonstrate how to use these features with Python.
Python Example: Incremental Sort with PostgreSQL 17
To use this feature, let's first set up a PostgreSQL connection using Python's psycopg2 library:
`import psycopg2
conn = psycopg2.connect(
host="localhost",
database="test_db",
user="postgres",
password="your_password"
)
cur = conn.cursor()
cur.execute("""
CREATE TABLE IF NOT EXISTS large_dataset (
id SERIAL PRIMARY KEY,
category VARCHAR(50),
value INT
);
""")
cur.execute("""
INSERT INTO large_dataset (category, value)
SELECT
'Category ' || (i % 10),
random() * 1000
FROM generate_series(1, 1000000) i;
""")
conn.commit()
cur.execute("""
EXPLAIN ANALYZE
SELECT * FROM large_dataset
ORDER BY category, value;
""")
query_plan = cur.fetchall()
for line in query_plan:
print(line)
cur.close()
conn.close()
`
In this example, PostgreSQL 17's improved incremental sort efficiently handles the ORDER BY clause, sorting data incrementally and reducing overall query execution time.
Python Example: Using JSONPath Enhancements
`## Reconnect to the database
conn = psycopg2.connect(
host="localhost",
database="test_db",
user="postgres",
password="your_password"
)
cur = conn.cursor()
cur.execute("""
CREATE TABLE IF NOT EXISTS json_data (
id SERIAL PRIMARY KEY,
data JSONB
);
""")
cur.execute("""
INSERT INTO json_data (data)
VALUES
('{"name": "Alice", "age": 30, "skills": ["Python", "SQL"]}'),
('{"name": "Bob", "age": 25, "skills": ["Java", "C++"]}');
""")
conn.commit()
cur.execute("""
SELECT data ->> 'name' AS name, data ->> 'age' AS age
FROM json_data
WHERE data @? '$.skills ? (@ == "Python")';
""")
results = cur.fetchall()
for row in results:
print(row)
cur.close()
conn.close()
`
This code demonstrates how PostgreSQL 17’s enhanced JSONPath capabilities simplify extracting data from JSON fields based on complex conditions.
Python Example: Parallel Index Creation
`## Reconnect to the database
conn = psycopg2.connect(
host="localhost",
database="test_db",
user="postgres",
password="your_password"
)
cur = conn.cursor()
cur.execute("""
CREATE TABLE IF NOT EXISTS large_table (
id SERIAL PRIMARY KEY,
data VARCHAR(255)
);
""")
cur.execute("""
INSERT INTO large_table (data)
SELECT
md5(random()::text)
FROM generate_series(1, 5000000);
""")
conn.commit()
cur.execute("""
CREATE INDEX CONCURRENTLY large_table_data_idx ON large_table (data);
""")
conn.commit()
cur.close()
conn.close()
`
This example showcases PostgreSQL 17's improved ability to create indexes concurrently using multiple CPU cores, which is highly beneficial when working with massive tables.
Python Example: SQL/JSON Standard Functions
`## Reconnect to the database
conn = psycopg2.connect(
host="localhost",
database="test_db",
user="postgres",
password="your_password"
)
cur = conn.cursor()
cur.execute("""
CREATE TABLE IF NOT EXISTS employee_data (
id SERIAL PRIMARY KEY,
info JSONB
);
""")
cur.execute("""
INSERT INTO employee_data (info)
VALUES
('{"name": "John", "department": "Sales", "salary": 5000}'),
('{"name": "Jane", "department": "IT", "salary": 7000}');
""")
conn.commit()
cur.execute("""
SELECT jsonb_path_query_first(info, '$.department') AS department
FROM employee_data
WHERE jsonb_path_exists(info, '$.salary ? (@ > 6000)');
""")
results = cur.fetchall()
for row in results:
print(row)
cur.close()
conn.close()
`
In this example, we demonstrate how to use SQL/JSON standard functions to query JSON data, showcasing PostgreSQL 17's compliance with new SQL standards.
For more information on PostgreSQL 17 and its new features, refer to the official documentation.
The above is the detailed content of Exploring New Features in PostgreSQL with Python. For more information, please follow other related articles on the PHP Chinese website!