In the previous blog we saw how to install and setup neo4j locally with 2 plugins APOC and Graph Data Science Library - GDS. In this blog I am going to take a toy dataset(products in a e-commerce website) and store that in Neo4j.
Allocating Sufficient Memory For Neo4j
Before starting to load the data if in your use case you have huge data ensure that sufficient amount of memory is allocated to neo4j. To do that :
- Click on the three dots to the right of open
- Click on Open folder -> Configuration
- Click on neo4j.conf
- Search for heap in neo4j.conf, uncomment lines 77, 78 and change 256m to 2048m, this ensures 2048mb is allocated for data storage in neo4j.
Creating Nodes
Graphs have two primary components nodes and relationships, let's create the nodes first and later establish the relationships.
The data I am using is present here - data
Use the requirements.txt present here to create a python virtual environment - requirements.txt
Let's define various functions to push data.
Importing necessary libraries
import pandas as pd from neo4j import GraphDatabase from openai import OpenAI
- We are going to use openai to generate embeddings
client = OpenAI(api_key="") product_data_df = pd.read_csv('../data/product_data.csv')
- To generate embeddings
def get_embedding(text): """ Used to generate embeddings using OpenAI embeddings model :param text: str - text that needs to be converted to embeddings :return: embedding """ model = "text-embedding-3-small" text = text.replace("\n", " ") return client.embeddings.create(input=[text], model=model).data[0].embedding
- As per our dataset we can have two unique node labels, Category : Category of product, Product: Name of product. Let's create category label, neo4j offers something called property, you can imagine these to be metadata for a particular node. Here name and embedding are the properties. So we are storing the name of category and its corresponding embedding in DB.
def create_category(product_data_df): """ Used to generate queries for creating category nodes in neo4j :param product_data_df: pandas dataframe - data :return: query_list: list - list containing all create node queries for category """ cat_query = """CREATE (a:Category {name: '%s', embedding: %s})""" distinct_category = product_data_df['Category'].unique() query_list = [] for category in distinct_category: embedding = get_embedding(category) query_list.append(cat_query % (category, embedding)) return query_list
- Similarly we can create product nodes, here the properties would be name, description, price, warranty_period, available_stock, review_rating, product_release_date, embedding
def create_product(product_data_df): """ Used to generate queries for creating product nodes in neo4j :param product_data_df: pandas dataframe - data :return: query_list: list - list containing all create node queries for product """ product_query = """CREATE (a:Product {name: '%s', description: '%s', price: %d, warranty_period: %d, available_stock: %d, review_rating: %f, product_release_date: date('%s'), embedding: %s})""" query_list = [] for idx, row in product_data_df.iterrows(): embedding = get_embedding(row['Product Name'] + " - " + row['Description']) query_list.append(product_query % (row['Product Name'], row['Description'], int(row['Price (INR)']), int(row['Warranty Period (Years)']), int(row['Stock']), float(row['Review Rating']), str(row['Product Release Date']), embedding)) return query_list
- Now let's create another function to execute the queries generated by the above 2 functions. Update your username and password appropriately.
def execute_bulk_query(query_list): """ Executes queries is a list one by one :param query_list: list - list of cypher queries :return: None """ url = "bolt://localhost:7687" auth = ("neo4j", "neo4j@123") with GraphDatabase.driver(url, auth=auth) as driver: with driver.session() as session: for query in query_list: try: session.run(query) except Exception as error: print(f"Error in executing query - {query}, Error - {error}")
- Complete code
import pandas as pd from neo4j import GraphDatabase from openai import OpenAI client = OpenAI(api_key="") product_data_df = pd.read_csv('../data/product_data.csv') def preprocessing(df, columns_to_replace): """ Used to preprocess certain column in dataframe :param df: pandas dataframe - data :param columns_to_replace: list - column name list :return: df: pandas dataframe - processed data """ df[columns_to_replace] = df[columns_to_replace].apply(lambda col: col.str.replace("'s", "s")) df[columns_to_replace] = df[columns_to_replace].apply(lambda col: col.str.replace("'", "")) return df def get_embedding(text): """ Used to generate embeddings using OpenAI embeddings model :param text: str - text that needs to be converted to embeddings :return: embedding """ model = "text-embedding-3-small" text = text.replace("\n", " ") return client.embeddings.create(input=[text], model=model).data[0].embedding def create_category(product_data_df): """ Used to generate queries for creating category nodes in neo4j :param product_data_df: pandas dataframe - data :return: query_list: list - list containing all create node queries for category """ cat_query = """CREATE (a:Category {name: '%s', embedding: %s})""" distinct_category = product_data_df['Category'].unique() query_list = [] for category in distinct_category: embedding = get_embedding(category) query_list.append(cat_query % (category, embedding)) return query_list def create_product(product_data_df): """ Used to generate queries for creating product nodes in neo4j :param product_data_df: pandas dataframe - data :return: query_list: list - list containing all create node queries for product """ product_query = """CREATE (a:Product {name: '%s', description: '%s', price: %d, warranty_period: %d, available_stock: %d, review_rating: %f, product_release_date: date('%s'), embedding: %s})""" query_list = [] for idx, row in product_data_df.iterrows(): embedding = get_embedding(row['Product Name'] + " - " + row['Description']) query_list.append(product_query % (row['Product Name'], row['Description'], int(row['Price (INR)']), int(row['Warranty Period (Years)']), int(row['Stock']), float(row['Review Rating']), str(row['Product Release Date']), embedding)) return query_list def execute_bulk_query(query_list): """ Executes queries is a list one by one :param query_list: list - list of cypher queries :return: None """ url = "bolt://localhost:7687" auth = ("neo4j", "neo4j@123") with GraphDatabase.driver(url, auth=auth) as driver: with driver.session() as session: for query in query_list: try: session.run(query) except Exception as error: print(f"Error in executing query - {query}, Error - {error}") # PREPROCESSING product_data_df = preprocessing(product_data_df, ['Product Name', 'Description']) # CREATE CATEGORY query_list = create_category(product_data_df) execute_bulk_query(query_list) # CREATE PRODUCT query_list = create_product(product_data_df) execute_bulk_query(query_list)
Creating Relationships
- We are going to create relationships between Category and Product and the name of the relationship would be CATEGORY_CONTAINS_PRODUCT
from neo4j import GraphDatabase import pandas as pd product_data_df = pd.read_csv('../data/product_data.csv') def preprocessing(df, columns_to_replace): """ Used to preprocess certain column in dataframe :param df: pandas dataframe - data :param columns_to_replace: list - column name list :return: df: pandas dataframe - processed data """ df[columns_to_replace] = df[columns_to_replace].apply(lambda col: col.str.replace("'s", "s")) df[columns_to_replace] = df[columns_to_replace].apply(lambda col: col.str.replace("'", "")) return df def create_category_food_relationship_query(product_data_df): """ Used to create relationship between category and products :param product_data_df: dataframe - data :return: query_list: list - cypher queries """ query = """MATCH (c:Category {name: '%s'}), (p:Product {name: '%s'}) CREATE (c)-[:CATEGORY_CONTAINS_PRODUCT]->(p)""" query_list = [] for idx, row in product_data_df.iterrows(): query_list.append(query % (row['Category'], row['Product Name'])) return query_list def execute_bulk_query(query_list): """ Executes queries is a list one by one :param query_list: list - list of cypher queries :return: None """ url = "bolt://localhost:7687" auth = ("neo4j", "neo4j@123") with GraphDatabase.driver(url, auth=auth) as driver: with driver.session() as session: for query in query_list: try: session.run(query) except Exception as error: print(f"Error in executing query - {query}, Error - {error}") # PREPROCESSING product_data_df = preprocessing(product_data_df, ['Product Name', 'Description']) # CATEGORY - FOOD RELATIONSHIP query_list = create_category_food_relationship_query(product_data_df) execute_bulk_query(query_list)
- By using MATCH query to match the already created nodes we establish relationships between then.
Visualizing The Created Nodes
Hover over the open icon and click on neo4j browser to visualize the nodes that we have created.
And our data is loaded into neo4j along with their embeddings.
In the fore-coming blogs we'll see how to build a graph query engine using python and use the fetched data to do augmented generation.
Hope this helps... See you !!!
LinkedIn - https://www.linkedin.com/in/praveenr2998/
Github - https://github.com/praveenr2998/Creating-Lightweight-RAG-Systems-With-Graphs/tree/main/push_data_to_db
The above is the detailed content of Load Data Into Neo4j. For more information, please follow other related articles on the PHP Chinese website!

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

Error loading Pickle file in Python 3.6 environment: ModuleNotFoundError:Nomodulenamed...

How to solve the problem of Jieba word segmentation in scenic spot comment analysis? When we are conducting scenic spot comments and analysis, we often use the jieba word segmentation tool to process the text...

How to use regular expression to match the first closed tag and stop? When dealing with HTML or other markup languages, regular expressions are often required to...

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver Mac version
Visual web development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version
Chinese version, very easy to use