


大きなモデルは、現実世界についての独自の理解を形成することができます!
MITの研究によると、モデルの能力が高まるにつれて、現実の理解は単なる模倣を超えたものになる可能性があります。
たとえば、大型モデルが匂いを嗅いだことがない場合、それは匂いを理解できないことを意味しますか?
研究により、理解を容易にするためにいくつかの概念を自発的にシミュレートできることが判明しました。
この研究は、将来、大規模なモデルが言語と世界をより深く理解できることが期待されることを意味します この論文は、トップカンファレンスである ICML 24 に採択されました。
この論文の著者は、MIT コンピューター人工知能研究所 (CSAIL) の中国人博士課程学生 Charles Jin とその指導教員 Martin Rinard 教授です。
研究では、著者は大規模なモデルにコードテキストのみを学習するように依頼したところ、モデルがその背後にある意味を徐々に理解していることがわかりました。
リナード教授は、この研究は現代の人工知能の中核となる問題に直接取り組んでいると述べました -
大規模モデルの能力は単に大規模な統計的相関によるものなのか、それともそうでしょうか彼らが取り組む現実世界の問題について有意義な理解を生み出すということは本当ですか?
△出典:MIT公式ウェブサイト
同時に、この研究は多くの議論を引き起こしました。
一部のネチズンは、大きなモデルは人間とは異なる言語を理解するかもしれないが、この研究は少なくともモデルがトレーニングデータを記憶するだけではないことを示していると述べました。
大規模モデルに純粋なコードを学習させよう
大規模モデルが意味レベルの理解を生み出すことができるかどうかを調査するために、著者は、プログラム コードとそれに対応する入力と出力で構成される合成データ セットを構築しました。
これらのコード プログラムは、Karel と呼ばれる教育言語で書かれており、主に 2D グリッド世界でナビゲートするロボットのタスクを実装するために使用されます。
このグリッドの世界は 8x8 のグリッドで構成されており、各グリッドには障害物、マーカー、またはオープン スペースを含めることができます。ロボットはグリッド間を移動し、マーカーの配置/ピックアップなどの操作を実行できます。
カレル言語には、move (1 歩進む)、turnLeft (左に 90 度回転)、turnRight (右に 90 度回転)、pickMarker (マーカーを拾う)、putMarker (マーカーを配置) の 5 つの原始操作が含まれています。オブジェクト)、プログラムはこれらの基本的な操作のシーケンスで構成されます。
著者らは、各プログラムの長さが 6 ~ 10 の 500,000 個のカレル プログラムを含むトレーニング セットをランダムに生成しました。
各トレーニング サンプルは、5 つの入力状態、5 つの出力状態、および完全なプログラム コードの 3 つの部分で構成されます。入力状態と出力状態は特定の形式の文字列にエンコードされます。
このデータを使用して、著者らは標準の Transformer アーキテクチャの CodeGen モデルのバリアントをトレーニングしました。
トレーニング プロセス中、モデルは各サンプルの入出力情報とプログラム プレフィックスにアクセスできますが、プログラム実行の完全な軌跡と中間状態を確認することはできません。
トレーニング セットに加えて、著者はモデルの汎化パフォーマンスを評価するために 10,000 個のサンプルを含むテスト セットも構築しました。
言語モデルがコードの背後にあるセマンティクスを把握しているかどうかを研究し、同時にモデルの「思考プロセス」を深く理解するために、著者は一連の検出器を設計しました。線形分類器と単一/二重隠れ層 MLP を含む組み合わせ。
検出器の入力は、プログラムトークンの生成過程における言語モデルの隠れた状態であり、予測ターゲットは、プログラムトークンに対するロボットの向きや偏差を含む、プログラム実行の中間状態です。初期位置とは、変位(位置)と障害物に正面を向いているかどうか(障害物)の 3 つの特性です。
生成モデルのトレーニング プロセス中、著者は 4000 ステップごとに上記の 3 つの特徴を記録し、検出器のトレーニング データ セットを形成するために生成モデルの隠れた状態も記録しました。
大規模モデル学習の 3 段階
言語によって生成されたプログラムの多様性、複雑さ、その他の指標を観察することによってモデル トレーニング プロセスが変化するにつれて、著者はトレーニング プロセスを 3 つのステージに分割します -
喃語 (ナンセンス) ステージ: 出力プログラムは反復性が高く、検出器の精度は不安定です。
文法習得段階: プログラムの多様性が急速に増加し、生成精度がわずかに増加し、混乱が減少します。これは、言語モデルがプログラムの構文構造を学習したことを示しています。
意味獲得段階: プログラムの多様性と構文構造の習熟度は安定していますが、生成精度と検出器のパフォーマンスは大幅に向上しており、言語モデルがプログラムの意味を学習していることを示しています。
Specifically, the Babbling stage occupies the first 50% of the entire training process. For example, when the training reaches about 20%, no matter what specification is input, the model will only generate a fixed program - "pickMarker" Repeat 9 times.
The grammar acquisition stage is at 50% to 75% of the training process. The model’s perplexity on the Karel program has dropped significantly, indicating that the language model has begun to better adapt to the statistical characteristics of the Karel program, but the generated The accuracy of the program has not improved much (from about 10% to about 25%), and it still cannot complete the task accurately.
The semantic acquisition stage is the final 25%, and the accuracy of the program has improved dramatically, from about 25% to more than 90%, and the generated program can accurately complete the given task.
Further experiments found that the detector can not only predict the synchronized time step at time t, but also predict the program execution status of subsequent time steps.
For example, assume that the generative model generates token "move" at time t and will generate "turnLeft" at time t+1.
At the same time, the program state at time t is that the robot is facing north and is located at coordinates (0,0), while the robot at time t+1 will be that the robot will be facing west, with the position unchanged.
If the detector can successfully predict from the hidden state of the language model at time t that the robot will face the west at time t+1, it means that the hidden state is already included before generating "turnLeft" The status change information brought by this operation.
This phenomenon shows that the model does not only have a semantic understanding of the generated program part, but at each step of generation, it has already anticipated and planned the content to be generated next, showing that Develop preliminary future-oriented reasoning abilities.
But this discovery has brought new questions to this research-
Is the accuracy improvement observed in the experiment really an improvement in the generative model? , or is it the result of the detector's own inference?
In order to resolve this doubt, the author added a semantic detection intervention experiment.
The basic idea of the experiment is to change the semantic interpretation rules of program operations, which are divided into two methods: "flip" and "adversarial".
"flip" is a forced reversal of the meaning of the instruction. For example, "turnRight" is forcibly interpreted as "turn left". However, only "turnLeft" and "turnRight" can perform this kind of reversal; #🎜 🎜#
"adversarial" randomly scrambles the semantics corresponding to all instructions. The specific method is as shown in the table below.# 🎜🎜# [ 1 ] https://news.mit.edu/2024/llms-develop-own-understanding-of-reality-as-language-abilities-improve-0814
[ 2 ] https://www.reddit.com/r/LocalLLaMA/comments/1esxkin/llms_develop_their_own_understanding_of_reality/
The above is the detailed content of Big models have their own understanding of language! MIT paper reveals the 'thought process' of large models. For more information, please follow other related articles on the PHP Chinese website!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver CS6
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.