search
HomeTechnology peripheralsAINon-Transformer architecture stands up! The first pure attention-free large model, surpassing the open source giant Llama 3.1

맘바 아키텍처의 대형 모델이 다시 한 번 트랜스포머에 도전했습니다.

이번에는 드디어 Mamba 아키텍처 모델이 "일어설" 것인가? Mamba는 2023년 12월 처음 출시된 이후 Transformer의 심각한 경쟁자로 등장했습니다.

이후 Mistral에서 출시한 Mamba 아키텍처 기반 최초의 오픈소스 대형 모델인 Codestral 7B 등 Mamba 아키텍처를 사용하는 모델이 계속해서 등장했습니다.

오늘 아부다비 기술 혁신 연구소(TII)는 새로운 오픈 소스 Mamba 모델인 Falcon Mamba 7B를 출시했습니다.

非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1

먼저 Falcon Mamba 7B의 주요 특징을 요약해 보겠습니다. 메모리 저장 용량을 늘리지 않고도 모든 길이의 시퀀스를 처리할 수 있으며 단일 24GB A10 GPU에서 실행할 수 있습니다.

현재 Hugging Face에서 Falcon Mamba 7B를 보고 사용할 수 있습니다. 이 인과 디코더 전용 모델은 새로운 Mamba State Space Language Model(SSLM) 아키텍처를 사용하여 다양한 텍스트 생성 작업을 처리합니다.

결과에 따르면 Falcon Mamba 7B는 Meta의 Llama 3 8B, Llama 3.1 8B 및 Mistral 7B를 포함한 여러 벤치마크에서 동급 크기의 주요 모델을 능가합니다.

非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1

Falcon Mamba 7B는 기본 버전, 명령 미세 조정 버전, 4비트 버전 및 명령 미세 조정 4비트 버전의 네 가지 변형 모델로 나뉩니다.

非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1

Falcon Mamba 7B는 오픈 소스 모델로서 Apache 2.0 기반 라이선스 "Falcon License 2.0"을 채택하여 연구 및 응용 목적을 지원합니다.

非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1

Hugging Face 주소: https://huggingface.co/tiiuae/falcon-mamba-7b

Falcon Mamba 7B는 Falcon 180B, Falcon 40B 및 Falcon 2 Four에 이어 세 번째 TII 오픈 소스가 되었습니다. 모델이며 최초의 Mamba SSLM 아키텍처 모델입니다.

非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1

The first general-purpose large-scale pure Mamba model

For a long time, Transformer-based models have dominated generative AI. However, researchers have noticed that the Transformer architecture has difficulty processing long text information. Difficulties may be encountered.

Essentially, the attention mechanism in Transformer understands the context by comparing each word (or token) with each word in the text, which requires more computing power and memory requirements to handle the growing context window.

But if the computing resources are not expanded accordingly, the model inference speed will slow down, and text exceeding a certain length cannot be processed. To overcome these obstacles, the State Space Language Model (SSLM) architecture, which works by continuously updating the state while processing words, has emerged as a promising alternative and is being deployed by many institutions including TII. This kind of architecture.

Falcon Mamba 7B uses the Mamba SSM architecture originally proposed in a December 2023 paper by researchers at Carnegie Mellon University and Princeton University.

The architecture uses a selection mechanism that allows the model to dynamically adjust its parameters based on the input. In this way, the model can focus on or ignore specific inputs, similar to how the attention mechanism works in Transformer, while providing the ability to process long sequences of text (such as entire books) without requiring additional memory or computing resources.

TII noted that this approach makes the model suitable for tasks such as enterprise-level machine translation, text summarization, computer vision and audio processing tasks, and estimation and prediction.

Training Data

Falcon Mamba 7B Training data is up to 5500GT, mainly composed of RefinedWeb dataset, with the addition of high-quality technical data, code data and mathematical data from public sources. All data is tokenized using Falcon-7B/11B tokenizers.

Similar to other Falcon series models, Falcon Mamba 7B is trained using a multi-stage training strategy, the context length is increased from 2048 to 8192. In addition, inspired by the concept of course learning, TII carefully selects mixed data throughout the training phase, fully considering the diversity and complexity of the data.

In the final training stage, TII uses a small set of high-quality curated data (i.e. samples from Fineweb-edu) to further improve performance.

Training process, hyperparameters

Most of the training of Falcon Mamba 7B is completed on 256 H100 80GB GPUs, using 3D parallelism (TP=1, PP=1, DP=256) strategy combined with ZeRO. The figure below shows the model hyperparameter details, including accuracy, optimizer, maximum learning rate, weight decay and batch size.

非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1

Specifically, Falcon Mamba 7B was trained with the AdamW optimizer, WSD (warm-stabilize-decay) learning rate plan, and during the training process of the first 50 GT, the batch size increased from b_min=128 to b_max=2048 .

In the stable phase, TII uses the maximum learning rate η_max=6.4×10^−4, and then decays it to the minimum value using an exponential plan over 500GT非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1. At the same time, TII uses BatchScaling in the acceleration phase to re-adjust the learning rate η so that the Adam noise temperature 非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1 remains constant.

The entire model training took about two months.

Model Evaluation

To understand how Falcon Mamba 7B compares to leading Transformer models in its size class, the study conducted a test to determine what the model can handle using a single 24GB A10 GPU Maximum context length.

The results show that Falcon Mamba is able to adapt to larger sequences than the current Transformer model, while theoretically able to adapt to unlimited context lengths.

非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1

Next, the researchers measured the model generation throughput using a batch size of 1 and a hardware setting of H100 GPU. The results are shown in the figure below, Falcon Mamba generates all tokens at constant throughput without any increase in CUDA peak memory. For Transformer models, peak memory increases and generation speed slows down as the number of tokens generated increases.

非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1

Even on standard industry benchmarks, the new model performs better than or close to popular transformer models as well as pure and hybrid state-space models.

For example, in the Arc, TruthfulQA and GSM8K benchmarks, Falcon Mamba 7B scored 62.03%, 53.42% and 52.54% respectively, surpassing Llama 3 8B, Llama 3.1 8B, Gemma 7B and Mistral 7B. However, the Falcon Mamba 7B lags far behind these models in the MMLU and Hellaswag benchmarks.

非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1

非Transformer架构站起来了!首个纯无注意力大模型,超越开源巨头Llama 3.1

TII principal investigator Hakim Hacid said in a statement: The launch of Falcon Mamba 7B represents a major step forward for the agency, inspiring new perspectives and furthering the push for intelligence Systematic exploration. At TII, they are pushing the boundaries of SSLM and transformer models to inspire further innovation in generative AI.

Currently, TII’s Falcon family of language models has been downloaded more than 45 million times – making it one of the most successful LLM versions in the UAE.

Falcon Mamba 7B paper will be released soon, you can wait a moment.

Reference link:
https://huggingface.co/blog/falconmamba
https://venturebeat.com/ai/falcon-mamba-7bs-powerful -new-ai-architecture-offers-alternative-to-transformer-models/

The above is the detailed content of Non-Transformer architecture stands up! The first pure attention-free large model, surpassing the open source giant Llama 3.1. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
DSA如何弯道超车NVIDIA GPU?DSA如何弯道超车NVIDIA GPU?Sep 20, 2023 pm 06:09 PM

你可能听过以下犀利的观点:1.跟着NVIDIA的技术路线,可能永远也追不上NVIDIA的脚步。2.DSA或许有机会追赶上NVIDIA,但目前的状况是DSA濒临消亡,看不到任何希望另一方面,我们都知道现在大模型正处于风口位置,业界很多人想做大模型芯片,也有很多人想投大模型芯片。但是,大模型芯片的设计关键在哪,大带宽大内存的重要性好像大家都知道,但做出来的芯片跟NVIDIA相比,又有何不同?带着问题,本文尝试给大家一点启发。纯粹以观点为主的文章往往显得形式主义,我们可以通过一个架构的例子来说明Sam

阿里云通义千问14B模型开源!性能超越Llama2等同等尺寸模型阿里云通义千问14B模型开源!性能超越Llama2等同等尺寸模型Sep 25, 2023 pm 10:25 PM

2021年9月25日,阿里云发布了开源项目通义千问140亿参数模型Qwen-14B以及其对话模型Qwen-14B-Chat,并且可以免费商用。Qwen-14B在多个权威评测中表现出色,超过了同等规模的模型,甚至有些指标接近Llama2-70B。此前,阿里云还开源了70亿参数模型Qwen-7B,仅一个多月的时间下载量就突破了100万,成为开源社区的热门项目Qwen-14B是一款支持多种语言的高性能开源模型,相比同类模型使用了更多的高质量数据,整体训练数据超过3万亿Token,使得模型具备更强大的推

ICCV 2023揭晓:ControlNet、SAM等热门论文斩获奖项ICCV 2023揭晓:ControlNet、SAM等热门论文斩获奖项Oct 04, 2023 pm 09:37 PM

在法国巴黎举行了国际计算机视觉大会ICCV(InternationalConferenceonComputerVision)本周开幕作为全球计算机视觉领域顶级的学术会议,ICCV每两年召开一次。ICCV的热度一直以来都与CVPR不相上下,屡创新高在今天的开幕式上,ICCV官方公布了今年的论文数据:本届ICCV共有8068篇投稿,其中有2160篇被接收,录用率为26.8%,略高于上一届ICCV2021的录用率25.9%在论文主题方面,官方也公布了相关数据:多视角和传感器的3D技术热度最高在今天的开

复旦大学团队发布中文智慧法律系统DISC-LawLLM,构建司法评测基准,开源30万微调数据复旦大学团队发布中文智慧法律系统DISC-LawLLM,构建司法评测基准,开源30万微调数据Sep 29, 2023 pm 01:17 PM

随着智慧司法的兴起,智能化方法驱动的智能法律系统有望惠及不同群体。例如,为法律专业人员减轻文书工作,为普通民众提供法律咨询服务,为法学学生提供学习和考试辅导。由于法律知识的独特性和司法任务的多样性,此前的智慧司法研究方面主要着眼于为特定任务设计自动化算法,难以满足对司法领域提供支撑性服务的需求,离应用落地有不小的距离。而大型语言模型(LLMs)在不同的传统任务上展示出强大的能力,为智能法律系统的进一步发展带来希望。近日,复旦大学数据智能与社会计算实验室(FudanDISC)发布大语言模型驱动的中

AI技术在蚂蚁集团保险业务中的应用:革新保险服务,带来全新体验AI技术在蚂蚁集团保险业务中的应用:革新保险服务,带来全新体验Sep 20, 2023 pm 10:45 PM

保险行业对于社会民生和国民经济的重要性不言而喻。作为风险管理工具,保险为人民群众提供保障和福利,推动经济的稳定和可持续发展。在新的时代背景下,保险行业面临着新的机遇和挑战,需要不断创新和转型,以适应社会需求的变化和经济结构的调整近年来,中国的保险科技蓬勃发展。通过创新的商业模式和先进的技术手段,积极推动保险行业实现数字化和智能化转型。保险科技的目标是提升保险服务的便利性、个性化和智能化水平,以前所未有的速度改变传统保险业的面貌。这一发展趋势为保险行业注入了新的活力,使保险产品更贴近人民群众的实际

百度文心一言全面向全社会开放,率先迈出重要一步百度文心一言全面向全社会开放,率先迈出重要一步Aug 31, 2023 pm 01:33 PM

8月31日,文心一言首次向全社会全面开放。用户可以在应用商店下载“文心一言APP”或登录“文心一言官网”(https://yiyan.baidu.com)进行体验据报道,百度计划推出一系列经过全新重构的AI原生应用,以便让用户充分体验生成式AI的理解、生成、逻辑和记忆等四大核心能力今年3月16日,文心一言开启邀测。作为全球大厂中首个发布的生成式AI产品,文心一言的基础模型文心大模型早在2019年就在国内率先发布,近期升级的文心大模型3.5也持续在十余个国内外权威测评中位居第一。李彦宏表示,当文心

致敬TempleOS,有开发者创建了启动Llama 2的操作系统,网友:8G内存老电脑就能跑致敬TempleOS,有开发者创建了启动Llama 2的操作系统,网友:8G内存老电脑就能跑Oct 07, 2023 pm 10:09 PM

不得不说,Llama2的「二创」项目越来越硬核、有趣了。自Meta发布开源大模型Llama2以来,围绕着该模型的「二创」项目便多了起来。此前7月,特斯拉前AI总监、重回OpenAI的AndrejKarpathy利用周末时间,做了一个关于Llama2的有趣项目llama2.c,让用户在PyTorch中训练一个babyLlama2模型,然后使用近500行纯C、无任何依赖性的文件进行推理。今天,在Karpathyllama2.c项目的基础上,又有开发者创建了一个启动Llama2的演示操作系统,以及一个

快手黑科技“子弹时间”赋能亚运转播,打造智慧观赛新体验快手黑科技“子弹时间”赋能亚运转播,打造智慧观赛新体验Oct 11, 2023 am 11:21 AM

杭州第19届亚运会不仅是国际顶级体育盛会,更是一场精彩绝伦的中国科技盛宴。本届亚运会中,快手StreamLake与杭州电信深度合作,联合打造智慧观赛新体验,在击剑赛事的转播中,全面应用了快手StreamLake六自由度技术,其中“子弹时间”也是首次应用于击剑项目国际顶级赛事。中国电信杭州分公司智能亚运专班组长芮杰表示,依托快手StreamLake自研的4K3D虚拟运镜视频技术和中国电信5G/全光网,通过赛场内部署的4K专业摄像机阵列实时采集的高清竞赛视频,

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.