search
HomeTechnology peripheralsAIDeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

But maybe you can’t beat the old man in the park?

The Paris Olympic Games are in full swing, and table tennis has attracted much attention. At the same time, robots have also made new breakthroughs in playing table tennis.

Just now, DeepMind proposed the first learning robot agent that can reach the level of human amateur players in competitive table tennis.

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

Paper address: https://arxiv.org/pdf/2408.03906

How good is this DeepMind robot at playing table tennis? Probably on par with human amateur players:

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

Both forehand and backhand:

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

The opponent uses a variety of playing styles, and the robot can also withstand it:

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

Receives serves with different spins:

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

However, the competition seems not as intense as the battle between the old men in the park.

For robots, table tennis requires mastering complex low-level skills and strategic gameplay, and requires long-term training. DeepMind believes that strategies that are suboptimal but can perform low-level skills proficiently may be a better choice. This distinguishes table tennis from purely strategic games such as chess and Go.

Thus, table tennis is a valuable benchmark for improving robot capabilities, including high-speed locomotion, real-time precise and strategic decision-making, system design, and direct competition with human opponents.

For this, the chief scientist of Google DeepMind praised: "The table tennis robot will help us solve high-speed control and perception problems."

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

The study conducted 29 table tennis games between robots and humans, including Bots won 45% of the time (13/29). All human players were players the robot had never seen before, ranging in ability from beginners to tournament players.

While the bot lost all its matches against the highest-level players, it won 100% of its matches against beginners and 55% of its matches against intermediate players, demonstrating the performance of a human amateur. .

Overall, the contributions of this research include:

  1. Proposing a hierarchical and modular policy architecture that includes:

  2. low-level controllers and their detailed skill descriptors that are useful for The capabilities of the agent are modeled and help bridge the gap between simulation and reality;

  3. Choose high-level controllers with low-level skills.

  4. Technology to implement zero-sample simulation to reality, including defining iterative methods based on real-world task distribution and defining automatic curriculum.

  5. Adapt to unseen opponents in real time.

Method introduction

The agent consists of a low-level skill library and a high-level controller. The low-level skill pool focuses on a specific aspect of table tennis, such as forehand topspin, backhand aim, or forehand serve. In addition to incorporating training strategies, the study also collects and stores information offline and online about the strengths, weaknesses, and limitations of each low-level skill. The high-level controller responsible for coordinating low-level skills will select the best skills based on current game statistics and skill descriptions.

In addition, the study also collected a small amount of human and human sparring game data as a seed for the initial task conditions. The data set includes position, speed and rotation information. The agent is then trained in a simulated environment using reinforcement learning and employs some existing techniques to seamlessly deploy the policy to real hardware.

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

The agent plays with humans to generate more training data. As the robot continues to learn, the game standards become more and more complex, allowing the agent to learn more and more complex actions. This hybrid “simulation-reality” loop creates an automated teaching that allows the robot’s skills to improve over time.

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

レイヤードコントロール

レイヤードコントロールには主に次の部分が含まれます:

  • 卓球のプレースタイル: 高レベルコントローラー (HLC、ハイレベルコントローラー) はまず、どのプレースタイル (フォアハンドまたはフォアハンドまたはハイレベルコントローラー) を使用するかを決定します。バックハンド);

  • 調整: 対戦相手との試合の統計に基づいて各 HLC の好み (H 値) をオンラインで維持します。

  • 最も効果的なスキルを選択します: LLC によるサンプリングに基づいて、HLC の候補者をペアにします。

  • 更新: H値と対戦相手の統計はゲームが終了するまで更新されます。

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

結果

研究者らは、初心者、中級者、上級者、上級 + スキルを含む、さまざまなレベルの 29 人の卓球選手とエージェントを比較しました。人間のプレーヤーは標準的な卓球ルールに従ってロボットと 3 試合を行いましたが、ロボットがサーブを打つことができなかったため、ルールが若干変更されました。

すべての対戦相手と対戦して、ロボットは試合の 45%、試合の 46% で勝利しました。スキル レベル別に見ると、ボットは初心者に対してはすべての試合に勝ち、上級および上級+ プレーヤーに対してはすべての試合に負け、中級者に対しては試合の 55% に勝ちました。これは、エージェントが卓球のラウンドにおいて人間の中級プレーヤーのレベルに達していることを示しています。

ロボットが上級プレイヤーに勝てない理由は、反応速度、カメラのセンシング能力、回転処理などを含む物理的および技術的な制限により、シミュレーション環境で正確にモデル化することが困難です。

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

ロボットとのスパーリングもとても魅力的です

研究参加者は、ロボットと遊ぶのがとても楽しかったと述べ、ロボットに対して「面白い」「魅力的」という点で高い評価を与えました。彼らはまた、再びロボットと戦うことに「非常に意欲がある」と満場一致で表明した。自由時間には、5分間で平均4分06秒ロボットと遊んだ。

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners
DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

このロボットはバックスピンが苦手です

最もスキルの高い参加者は、ロボットはバックスピンの処理が苦手だと述べました。この観察を検証するために、研究者らはボールのスピンに対するロボットの着地率をプロットしたところ、バックスピンが多いボールに直面するとロボットの着地率が大幅に低下することが結果で示された。この欠陥は、ロボットが低いボールを扱うときにテーブルとの衝突を避けようとすることが部分的に原因であり、第二に、ボールのスピンをリアルタイムで判断することが非常に難しいという事実によって引き起こされます。

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners

参考リンク:

https://sites.google.com/view/competitive-robot-table-tennis/home?utm_source&utm_medium&utm_campaign&utm_content&pli=1

The above is the detailed content of DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
DeepMind机器人打乒乓球,正手、反手溜到飞起,全胜人类初学者DeepMind机器人打乒乓球,正手、反手溜到飞起,全胜人类初学者Aug 09, 2024 pm 04:01 PM

但可能打不过公园里的老大爷?巴黎奥运会正在如火如荼地进行中,乒乓球项目备受关注。与此同时,机器人打乒乓球也取得了新突破。刚刚,DeepMind提出了第一个在竞技乒乓球比赛中达到人类业余选手水平的学习型机器人智能体。论文地址:https://arxiv.org/pdf/2408.03906DeepMind这个机器人打乒乓球什么水平呢?大概和人类业余选手不相上下:正手反手都会:对手采用多种打法,该机器人也能招架得住:接不同旋转的发球:不过,比赛激烈程度似乎不如公园老大爷对战。对机器人来说,乒乓球运动

DSA如何弯道超车NVIDIA GPU?DSA如何弯道超车NVIDIA GPU?Sep 20, 2023 pm 06:09 PM

你可能听过以下犀利的观点:1.跟着NVIDIA的技术路线,可能永远也追不上NVIDIA的脚步。2.DSA或许有机会追赶上NVIDIA,但目前的状况是DSA濒临消亡,看不到任何希望另一方面,我们都知道现在大模型正处于风口位置,业界很多人想做大模型芯片,也有很多人想投大模型芯片。但是,大模型芯片的设计关键在哪,大带宽大内存的重要性好像大家都知道,但做出来的芯片跟NVIDIA相比,又有何不同?带着问题,本文尝试给大家一点启发。纯粹以观点为主的文章往往显得形式主义,我们可以通过一个架构的例子来说明Sam

AlphaFold 3 重磅问世,全面预测蛋白质与所有生命分子相互作用及结构,准确性远超以往水平AlphaFold 3 重磅问世,全面预测蛋白质与所有生命分子相互作用及结构,准确性远超以往水平Jul 16, 2024 am 12:08 AM

编辑|萝卜皮自2021年发布强大的AlphaFold2以来,科学家们一直在使用蛋白质结构预测模型来绘制细胞内各种蛋白质结构的图谱、发现药物,并绘制每种已知蛋白质相互作用的「宇宙图」。就在刚刚,GoogleDeepMind发布了AlphaFold3模型,该模型能够对包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物进行联合结构预测。AlphaFold3的准确性对比过去许多专用工具(蛋白质-配体相互作用、蛋白质-核酸相互作用、抗体-抗原预测)有显著提高。这表明,在单个统一的深度学习框架内,可以实现

阿里云通义千问14B模型开源!性能超越Llama2等同等尺寸模型阿里云通义千问14B模型开源!性能超越Llama2等同等尺寸模型Sep 25, 2023 pm 10:25 PM

2021年9月25日,阿里云发布了开源项目通义千问140亿参数模型Qwen-14B以及其对话模型Qwen-14B-Chat,并且可以免费商用。Qwen-14B在多个权威评测中表现出色,超过了同等规模的模型,甚至有些指标接近Llama2-70B。此前,阿里云还开源了70亿参数模型Qwen-7B,仅一个多月的时间下载量就突破了100万,成为开源社区的热门项目Qwen-14B是一款支持多种语言的高性能开源模型,相比同类模型使用了更多的高质量数据,整体训练数据超过3万亿Token,使得模型具备更强大的推

从头开始构建,DeepMind新论文用伪代码详解Transformer从头开始构建,DeepMind新论文用伪代码详解TransformerApr 09, 2023 pm 08:31 PM

2017 年 Transformer 横空出世,由谷歌在论文《Attention is all you need》中引入。这篇论文抛弃了以往深度学习任务里面使用到的 CNN 和 RNN。这一开创性的研究颠覆了以往序列建模和 RNN 划等号的思路,如今被广泛用于 NLP。大热的 GPT、BERT 等都是基于 Transformer 构建的。Transformer 自推出以来,研究者已经提出了许多变体。但大家对 Transformer 的描述似乎都是以口头形式、图形解释等方式介绍该架构。关于 Tra

Demis Hassabis:AI 的强大,超乎我们的想象Demis Hassabis:AI 的强大,超乎我们的想象Apr 12, 2023 pm 06:43 PM

​近日,DeepMind 的创始人 Demis Hassabis 作客 Lex Fridman 的播客节目,谈了许多有趣的观点。在访谈的一开头,Hassabis 就直言图灵测试已经过时,因为这是数十年提出来的一个基准,且图灵测试是根据人的行动与反应来作判断,这就容易出现类似前段时间谷歌一工程师称 AI 系统已有意识的“闹剧”:研究者与一个语言模型对话,将自己的感知映射在对模型的判断上,有失客观。从2015年成立至今,DeepMind在人工智能领域的发展给世界带来过一次又一次的惊喜:从游戏程序Al

百度文心一言全面向全社会开放,率先迈出重要一步百度文心一言全面向全社会开放,率先迈出重要一步Aug 31, 2023 pm 01:33 PM

8月31日,文心一言首次向全社会全面开放。用户可以在应用商店下载“文心一言APP”或登录“文心一言官网”(https://yiyan.baidu.com)进行体验据报道,百度计划推出一系列经过全新重构的AI原生应用,以便让用户充分体验生成式AI的理解、生成、逻辑和记忆等四大核心能力今年3月16日,文心一言开启邀测。作为全球大厂中首个发布的生成式AI产品,文心一言的基础模型文心大模型早在2019年就在国内率先发布,近期升级的文心大模型3.5也持续在十余个国内外权威测评中位居第一。李彦宏表示,当文心

AI技术在蚂蚁集团保险业务中的应用:革新保险服务,带来全新体验AI技术在蚂蚁集团保险业务中的应用:革新保险服务,带来全新体验Sep 20, 2023 pm 10:45 PM

保险行业对于社会民生和国民经济的重要性不言而喻。作为风险管理工具,保险为人民群众提供保障和福利,推动经济的稳定和可持续发展。在新的时代背景下,保险行业面临着新的机遇和挑战,需要不断创新和转型,以适应社会需求的变化和经济结构的调整近年来,中国的保险科技蓬勃发展。通过创新的商业模式和先进的技术手段,积极推动保险行业实现数字化和智能化转型。保险科技的目标是提升保险服务的便利性、个性化和智能化水平,以前所未有的速度改变传统保险业的面貌。这一发展趋势为保险行业注入了新的活力,使保险产品更贴近人民群众的实际

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor