search
HomeWeb Front-endJS TutorialTop echniques to Protect Web Apps from Unauthorized JavaScript Execution

Top echniques to Protect Web Apps from Unauthorized JavaScript Execution

TL;DR: Keep your web app secure with these 5 vital techniques: validate and sanitize inputs, implement a content security policy, use subresource integrity, follow secure JavaScript practices, and conduct regular security audits. Protect web apps from unauthorized JavaScript execution and protect your users.

In early 2024, a series of cyberattacks exploited stored cross-site scripting (XSS) vulnerabilities in popular WordPress plugins like WP Statistics, WP Meta SEO, and LiteSpeed Cache. These attacks allowed attackers to inject malicious JavaScript, compromising over 5 million active installations.

As you can see, these attacks are a considerable threat to web applications nowadays. They can result in data leakage, identity theft, and, ultimately, loss of customer confidence. According to HackerOne Research, XSS attacks constituted 23% of all reported security threats in 2020, making them the most frequent.

This article will describe five techniques for safeguarding your app against unauthorized JavaScript executions.

1. Input validation and sanitization

This primarily involves verifying whether the user’s input is within the expected format. For example, the data in the email text field should be a valid email address, and the data in the username text field should follow the expected username structure.

Sanitization cleans this input by stripping out any malicious data that could be used in attacks such as XSS and SQL injection. These two are critical security measures for any web app, and they serve as the first line of defense against malicious data that users might input.

How to implement input validation and sanitization

a. Client-side form validation

Client-side form validation is the initial check of the data validation process. However, this should never be solely relied upon for security purposes because JavaScript can be disabled or manipulated, easily bypassing client-side checks.

Refer to the following code example of basic client-side validation using HTML 5.


For a more comprehensive look at client-side form validation, explore this detailed guide.

b. Server-side validation

Server-side validation ensures that all inputs are validated, regardless of the client-side validation status. It increases security by ensuring that malicious data never reaches your core app logic or database validation on the server. It is also less vulnerable to tampering.

Refer to the following code example of basic server-side validation using Node.js with Express.

const express = require('express');
const app = express();
const bodyParser = require('body-parser');

app.use(bodyParser.urlencoded({ extended: true }));

app.post('/submit', (req, res) => {
    const email = req.body.email;
    const emailRegex = /^[^\s@]+@[^\s@]+\.[^\s@]+$/;
    if (!emailRegex.test(email)) {
        return res.status(400).send('Invalid email format.');
    }
    // Process the valid email.
    res.send('Email is valid!');
});

app.listen(3000, () => {
    console.log('Server is running on port 3000');
});

c. Sanitization

Sanitization ensures that any potentially harmful data is removed or altered to a safe format. The following code example sanitizes input using the validator library in Node.js.

const express = require('express');
const app = express();
const bodyParser = require('body-parser');
const validator = require('validator');

app.use(bodyParser.urlencoded({ extended: true }));

app.post('/submit', (req, res) => {
    let email = req.body.email;
    if (!validator.isEmail(email)) {
        return res.status(400).send('Invalid email format.');
    }
    email = validator.normalizeEmail(email);
    // Process the sanitized email
    res.send('Email is valid and sanitized!');
});

app.listen(3000, () => {
    console.log('Server is running on port 3000');
});

2. Content security policy (CSP)

This is a strong security solution to guard web apps against threats such as XSS and data injection. Implementing CSP ensures that only scripts from specific, approved sources can run on your web pages. This significantly reduces the chance of malicious code execution.

In simpler terms, think of CSP as a bouncer for your web app. It checks where the scripts come from and only lets in those from trusted sources, keeping the bad scripts out.

How to implement CSP

Implementing CSP involves adding CSP directives to your web server’s HTTP response header. CSP directives are instructions that tell the browser which sources are permitted to load and execute content on a webpage. These directives provide granular control over various types of resources.

Key directives include:

  • default-src: Sets a default policy for all content types.
  • script-src: Specifies allowed sources for JavaScript.
  • style-src: Specifies allowed sources for stylesheets.
  • img-src: Specifies allowed sources for images.
  • object-src: Specifies allowed sources for plugins.

How to add CSP to the HTTP response header

You can add the CSP to the HTTP response header via your web server configuration. Refer to the following code example for setting up CSP in the Apache server.

Header set Content-Security-Policy "default-src 'self'; img-src *"

For Nginx, you can configure CSP as follows.

add_header Content-Security-Policy "default-src 'self'; img-src *"

How to add your CSP via meta tags

If you cannot access the web server’s configuration, you can include the CSP directly in your HTML file using a tag. But this is not the recommended way.

 <meta http-equiv="Content-Security-Policy" content="default-src 'self'; img-src *">

3. Sub-resource integrity (SRI)

This security feature helps browsers check if the resources obtained from a third party (for instance, a CDN) have been modified. It allows you to provide a cryptographic hash for these resources.

When the browser gets the resource, it compares its hash to the given hash. If the hash does not match, the resources will not be loaded, thereby protecting your app from malicious modifications.

How to implement SRI

Implementing SRI involves adding a cryptographic hash to the integrity attribute of your or tags. Here’s a step-by-step guide to setting up SRI:

Step 1: Generating the hash

You must generate a hash for the resource you want to include in your webpage. This can be done using a tool or online service like the Subresource Integrity Generator tool.

Step 2: Adding the hash to your resource

Once you have the hash, add it to the integrity attribute of the or link> tag.

Refer to the following code example.

<script src="https://example.com/script.js" integrity="sha384-oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/uxqAtD6x48V2aB1xzA7e2h53sF2aAuM" crossorigin="anonymous"></script>

In this example, the integrity attribute contains the hash, and the crossorigin=”anonymous” attribute ensures the resource is fetched with CORS (cross-origin resource sharing).

You can use SRI for stylesheets, as well.

<link rel="stylesheet" href="https://example.com/styles.css" integrity="sha384-oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/uxqAtD6x48V2aB1xzA7e2h53sF2aAuM" crossorigin="anonymous">

4. Secure JavaScript coding practices

Secure JavaScript coding practices are crucial for developing web apps robust against various attacks, XSS, and other malicious exploits. By following these best practices, developers can ensure their code is secure, maintainable, and less vulnerable to unauthorized execution.

Avoid using eval()

The eval() function is a significant security risk, as it executes a string of code, potentially allowing attackers to inject malicious scripts. Always avoid using eval() and similar functions like setTimeout(string) and setInterval(string).

Why these functions are dangerous:

  • Arbitrary code execution: These functions can execute any code passed to them as a string. If an attacker successfully inserts a malicious string, it will operate in the same way as the remaining code of your script.
  • Difficulty in code analysis: Using these functions makes it harder to analyze the code for security vulnerabilities. Static analysis tools cannot examine the strings that are passed through such functions.
  • Dynamic code injection: Attackers can use these functions to inject and execute code dynamically that was not originally part of the app, bypassing traditional security measures.

Use strict mode

Enabling strict mode in JavaScript helps catch common coding mistakes and unsafe actions, such as assigning values to undeclared variables. This improves the security and stability of your code. To enable strict mode, add “use strict”; at the beginning of a script or a function.

"use strict";

function safeFunction() {
    // Code in strict mode.
    let secureVariable = "Secure";
    console.log(secureVariable);
}

safeFunction();

Advantages and implications of enabling strict mode:

  • In strict mode, this is undefined in functions that are not called methods.
  • Strict mode will throw an error if a function has duplicate parameter names or an object literal has duplicate property names.
  • A with statement is not allowed in the strict mode because it makes code difficult to predict and optimize.

Refer to the following code example.

"use strict";

// Eliminates this coercion.
function showThis() {
    console.log(this); // In non-strict mode, this would be the global object; in strict mode, it's undefined.
}
showThis();

// Disallows duplicate property names or parameter values.
// This will throw an error in strict mode.
const obj = {
    prop: 1,
    prop: 2
};

// Prevents the use of with statement.
// This will throw an error in strict mode.
with (Math) {
    let x = cos(3.14);
}

Avoid inline JavaScript

Inline JavaScript can be significantly vulnerable to XSS attacks because it allows attackers to inject malicious scripts directly into your HTML. Instead, use external scripts to ensure all JavaScript is properly vetted and sanitized.

Avoid inline JavaScript because of:

  • Ease of injection: Inline JavaScript is more susceptible to injection attacks because it is part of the HTML content.
  • CSP compliance: Content security policies (CSP) can be more effectively enforced when JavaScript is kept in external files. Inline scripts often require the use of the unsafe-inline directive, which weakens CSP’s effectiveness.
  • Maintainability: Keeping JavaScript in separate files makes the codebase easier to manage and maintain.

Refer to the following code example.

<!-- Insecure Inline JavaScript -->
<!-- <button onclick="alert('Clicked!')">Click Me</button> -->

<!-- Secure External JavaScript -->
<button id="secureButton">Click Me</button>
<script>
    document.getElementById('secureButton').addEventListener('click', function() {
        alert('Clicked!');
    });
</script>

5. Regular Security Audits and Updates

Regular audits are essential for maintaining the integrity and security of web apps. By continuously assessing your app’s security, you can identify and fix vulnerabilities that could be exploited to execute unauthorized JavaScript or other malicious actions.

How to conduct regular security audits

Automated security scanning

Use tools like OWASP ZAP or Burp Suite to scan for known vulnerabilities. Automated scans provide a quick way to identify common security issues.

Manual code reviews

Regularly review your codebase manually to catch issues that automated tools might miss. It’s better to use experienced developers and security experts for this.

Penetration testing

Hire penetration testers to simulate attacks on your app, uncovering vulnerabilities that other methods might not detect.

Update dependencies

Keep your dependencies updated to fix known vulnerabilities in libraries and frameworks. Use package managers like NPM or pip to manage updates.

Security training

Continuously train your development team on the latest security practices and common vulnerabilities. This will ensure that your team is equipped to write secure code.

Concluding thoughts

Thanks for reading this article. We hope these 5 techniques enhance your app’s defenses against unauthorized JavaScript executions. By implementing these strategies, you can reduce the risk of attacks and ensure a safer, more secure web app for your users. Remember, staying proactive and vigilant in your security measures is key to protecting your digital assets.

Syncfusion JavaScript UI controls library is the only suite that you will ever need to build an app since it contains over 85 high-performance, lightweight, modular, and responsive UI components in a single package.

For current customers, the newest version of Essential Studio is available from the License and Downloads page. If you are not a Syncfusion customer, you can always download our free evaluation to see all our controls.

You can also contact us through our support forum, support portal, or feedback portal. We are always happy to assist you!

Related blogs

  • Easily Render Flat JSON Data in JavaScript File Manager
  • Effortlessly Synchronize JavaScript Controls Using DataManager
  • Optimizing Productivity: Integrate Salesforce with JavaScript Scheduler
  • Empower Your Data Insights: Integrating JavaScript Gantt Chart into Power BI

The above is the detailed content of Top echniques to Protect Web Apps from Unauthorized JavaScript Execution. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. JavaScript: A Comparative Analysis for DevelopersPython vs. JavaScript: A Comparative Analysis for DevelopersMay 09, 2025 am 12:22 AM

The main difference between Python and JavaScript is the type system and application scenarios. 1. Python uses dynamic types, suitable for scientific computing and data analysis. 2. JavaScript adopts weak types and is widely used in front-end and full-stack development. The two have their own advantages in asynchronous programming and performance optimization, and should be decided according to project requirements when choosing.

Python vs. JavaScript: Choosing the Right Tool for the JobPython vs. JavaScript: Choosing the Right Tool for the JobMay 08, 2025 am 12:10 AM

Whether to choose Python or JavaScript depends on the project type: 1) Choose Python for data science and automation tasks; 2) Choose JavaScript for front-end and full-stack development. Python is favored for its powerful library in data processing and automation, while JavaScript is indispensable for its advantages in web interaction and full-stack development.

Python and JavaScript: Understanding the Strengths of EachPython and JavaScript: Understanding the Strengths of EachMay 06, 2025 am 12:15 AM

Python and JavaScript each have their own advantages, and the choice depends on project needs and personal preferences. 1. Python is easy to learn, with concise syntax, suitable for data science and back-end development, but has a slow execution speed. 2. JavaScript is everywhere in front-end development and has strong asynchronous programming capabilities. Node.js makes it suitable for full-stack development, but the syntax may be complex and error-prone.

JavaScript's Core: Is It Built on C or C  ?JavaScript's Core: Is It Built on C or C ?May 05, 2025 am 12:07 AM

JavaScriptisnotbuiltonCorC ;it'saninterpretedlanguagethatrunsonenginesoftenwritteninC .1)JavaScriptwasdesignedasalightweight,interpretedlanguageforwebbrowsers.2)EnginesevolvedfromsimpleinterpreterstoJITcompilers,typicallyinC ,improvingperformance.

JavaScript Applications: From Front-End to Back-EndJavaScript Applications: From Front-End to Back-EndMay 04, 2025 am 12:12 AM

JavaScript can be used for front-end and back-end development. The front-end enhances the user experience through DOM operations, and the back-end handles server tasks through Node.js. 1. Front-end example: Change the content of the web page text. 2. Backend example: Create a Node.js server.

Python vs. JavaScript: Which Language Should You Learn?Python vs. JavaScript: Which Language Should You Learn?May 03, 2025 am 12:10 AM

Choosing Python or JavaScript should be based on career development, learning curve and ecosystem: 1) Career development: Python is suitable for data science and back-end development, while JavaScript is suitable for front-end and full-stack development. 2) Learning curve: Python syntax is concise and suitable for beginners; JavaScript syntax is flexible. 3) Ecosystem: Python has rich scientific computing libraries, and JavaScript has a powerful front-end framework.

JavaScript Frameworks: Powering Modern Web DevelopmentJavaScript Frameworks: Powering Modern Web DevelopmentMay 02, 2025 am 12:04 AM

The power of the JavaScript framework lies in simplifying development, improving user experience and application performance. When choosing a framework, consider: 1. Project size and complexity, 2. Team experience, 3. Ecosystem and community support.

The Relationship Between JavaScript, C  , and BrowsersThe Relationship Between JavaScript, C , and BrowsersMay 01, 2025 am 12:06 AM

Introduction I know you may find it strange, what exactly does JavaScript, C and browser have to do? They seem to be unrelated, but in fact, they play a very important role in modern web development. Today we will discuss the close connection between these three. Through this article, you will learn how JavaScript runs in the browser, the role of C in the browser engine, and how they work together to drive rendering and interaction of web pages. We all know the relationship between JavaScript and browser. JavaScript is the core language of front-end development. It runs directly in the browser, making web pages vivid and interesting. Have you ever wondered why JavaScr

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.