



The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com
The authors of the article are all from the Language Technology Laboratory of Cambridge University. One is Liu Yinhong, a third-year doctoral student, and his supervisors are professors Nigel Collier and Ehsan Shareghi. His research interests are large model and text evaluation, data generation, etc. Zhou Han, a second-year doctoral student in Tongyi, is mentored by professors Anna Korhonen and Ivan Vulić. His research interest is in efficient large models.
The large model exhibits excellent command following and task generalization capabilities. This unique ability comes from the use of command following data and human feedback reinforcement learning (RLHF) in LLMs training. In the RLHF training paradigm, the reward model is aligned with human preferences based on ranking comparison data. This enhances the alignment of LLMs with human values, thereby generating responses that better assist humans and adhere to human values.
Recently, the first large model conference COLM has just announced the acceptance results. One of the high-scoring works analyzed the score bias problem that is difficult to avoid and correct when LLM is used as a text evaluator, and proposed to convert the evaluation problem into a preference ranking. problem, and thus designed the PairS algorithm, an algorithm that can search and sort from pairwise preferences. By leveraging the assumptions of uncertainty and LLM transitivity, PairS can give efficient and accurate preference rankings and demonstrate higher consistency with human judgment on multiple test sets.
Paper link: https://arxiv.org/abs/2403.16950
Paper title: Aligning with Human Judgment: The Role of Pairwise Preference in Large Language Model Evaluators
Github address: https://github.com/cambridgeltl/PairS
What are the problems with large model evaluation?
A large number of recent works have demonstrated the excellent performance of LLMs in evaluating text quality, forming a new paradigm for reference-free evaluation of generative tasks, avoiding expensive human annotation costs. However, LLM evaluators are highly sensitive to prompt design and may even be affected by multiple biases, including positional bias, verbosity bias, and context bias. These biases prevent LLM evaluators from being fair and trustworthy, leading to inconsistencies and misalignments with human judgment.
To reduce biased predictions of LLMs, previous work developed calibration techniques to reduce bias in LLM predictions. We first conduct a systematic analysis of the effectiveness of calibration techniques in aligning pointwise LLM estimators. As shown in Figure 2 above, existing calibration methods still do not align the LLM estimator well even when supervision data is provided.
As shown in Formula 1, we believe that the main reason for the misalignment of evaluation is not the biased priors over evaluation score distribution of LLM, but the misalignment of the evaluation standard, that is, the LLM evaluator The likelihood (likelihood). We believe that LLM evaluators will have more consistent evaluation criteria with humans when doing pairwise evaluation, so we explore a new LLM evaluation paradigm to promote more aligned judgments.
Inspiration brought by RLHF
As shown in Figure 1 below, inspired by the alignment of reward models through preference data in RLHF, we believe that the LLM evaluator can be obtained by generating a preference ranking. More human-aligned predictions. Some recent work has begun to obtain preference rankings by asking LLM to perform pairwise comparisons. However, evaluating the complexity and scalability of preference rankings has been largely overlooked. They ignore the transitivity assumption, making the number of comparisons O (N^2), making the evaluation process expensive and infeasible.
PairS: Efficient Preference Search Algorithm
In this work, we propose two pairwise preference search algorithms (PairS-greedy and PairS-beam). PairS-greedy is an algorithm based on complete transitivity assumption and merge sort, and can obtain global preference sorting with only O (NlogN) complexity. The transitivity assumption means that, for example, for 3 candidates, LLM always has if A≻B and B≻C, then A≻C. Under this assumption we can directly use traditional ranking algorithms to obtain preference rankings from pairwise preferences.
But LLM does not have perfect transitivity, so we designed the PairS-beam algorithm. Under the looser transitivity assumption, we derive and simplify the likelihood function for preference ranking. PairS-beam is a search method that performs a beam search based on the likelihood value in each merge operation of the merge sort algorithm, and reduces the pairwise comparison space through the uncertainty of preferences. PairS-beam can adjust the contrast complexity and ranking quality, and efficiently provide the maximum likelihood estimate (MLE) of preference ranking. In Figure 3 below we show an example of how PairS-beam performs a merge operation.
Experimental results
We tested on multiple representative data sets, including the closed-ended abbreviation tasks NewsRoom and SummEval, and the open-ended story generation task HANNA, and compared multiple Baseline methods for LLM single-point evaluation, including unsupervised direct scoring, G-Eval, GPTScore and supervised training UniEval and BARTScore. As shown in Table 1 below, PairS has higher consistency with human ratings than them on every task. GPT-4-turbo can even achieve SOTA effects.
In the article, we also compared two baseline methods for preference ranking, win rate and ELO rating. PairS can achieve their same quality preference ranking with only about 30% of the number of comparisons. The paper also provides more insights into how pairwise preferences can be used to quantitatively compute the transitivity of LLM estimators, and how pairwise estimators can benefit from calibration.
For more research details, please refer to the original paper.
The above is the detailed content of High-scoring paper from COLM, the first large model conference: Preference search algorithm PairS makes text evaluation of large models more efficient. For more information, please follow other related articles on the PHP Chinese website!

PowerInfer提高了在消费级硬件上运行AI的效率上海交大团队最新推出了超强CPU/GPULLM高速推理引擎PowerInfer。PowerInfer和llama.cpp都在相同的硬件上运行,并充分利用了RTX4090上的VRAM。这个推理引擎速度有多快?在单个NVIDIARTX4090GPU上运行LLM,PowerInfer的平均token生成速率为13.20tokens/s,峰值为29.08tokens/s,仅比顶级服务器A100GPU低18%,可适用于各种LLM。PowerInfer与

要让大型语言模型(LLM)充分发挥其能力,有效的prompt设计方案是必不可少的,为此甚至出现了promptengineering(提示工程)这一新兴领域。在各种prompt设计方案中,思维链(CoT)凭借其强大的推理能力吸引了许多研究者和用户的眼球,基于其改进的CoT-SC以及更进一步的思维树(ToT)也收获了大量关注。近日,苏黎世联邦理工学院、Cledar和华沙理工大学的一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为LLM构建推理过程的能力不断得到提升,研究者也通

近期,复旦大学自然语言处理团队(FudanNLP)推出LLM-basedAgents综述论文,全文长达86页,共有600余篇参考文献!作者们从AIAgent的历史出发,全面梳理了基于大型语言模型的智能代理现状,包括:LLM-basedAgent的背景、构成、应用场景、以及备受关注的代理社会。同时,作者们探讨了Agent相关的前瞻开放问题,对于相关领域的未来发展趋势具有重要价值。论文链接:https://arxiv.org/pdf/2309.07864.pdfLLM-basedAgent论文列表:

FATE2.0全面升级,推动隐私计算联邦学习规模化应用FATE开源平台宣布发布FATE2.0版本,作为全球领先的联邦学习工业级开源框架。此次更新实现了联邦异构系统之间的互联互通,持续增强了隐私计算平台的互联互通能力。这一进展进一步推动了联邦学习与隐私计算规模化应用的发展。FATE2.0以全面互通为设计理念,采用开源方式对应用层、调度、通信、异构计算(算法)四个层面进行改造,实现了系统与系统、系统与算法、算法与算法之间异构互通的能力。FATE2.0的设计兼容了北京金融科技产业联盟的《金融业隐私计算

大型语言模型(LLM)被广泛应用于需要多个链式生成调用、高级提示技术、控制流以及与外部环境交互的复杂任务。尽管如此,目前用于编程和执行这些应用程序的高效系统却存在明显的不足之处。研究人员最近提出了一种新的结构化生成语言(StructuredGenerationLanguage),称为SGLang,旨在改进与LLM的交互性。通过整合后端运行时系统和前端语言的设计,SGLang使得LLM的性能更高、更易控制。这项研究也获得了机器学习领域的知名学者、CMU助理教授陈天奇的转发。总的来说,SGLang的

将不同的基模型象征为不同品种的狗,其中相同的「狗形指纹」表明它们源自同一个基模型。大模型的预训练需要耗费大量的计算资源和数据,因此预训练模型的参数成为各大机构重点保护的核心竞争力和资产。然而,与传统软件知识产权保护不同,对预训练模型参数盗用的判断存在以下两个新问题:1)预训练模型的参数,尤其是千亿级别模型的参数,通常不会开源。预训练模型的输出和参数会受到后续处理步骤(如SFT、RLHF、continuepretraining等)的影响,这使得判断一个模型是否基于另一个现有模型微调得来变得困难。无

IBM再度发力。随着AI系统的飞速发展,其能源需求也在不断增加。训练新系统需要大量的数据集和处理器时间,因此能耗极高。在某些情况下,执行一些训练好的系统,智能手机就能轻松胜任。但是,执行的次数太多,能耗也会增加。幸运的是,有很多方法可以降低后者的能耗。IBM和英特尔已经试验过模仿实际神经元行为设计的处理器。IBM还测试了在相变存储器中执行神经网络计算,以避免重复访问RAM。现在,IBM又推出了另一种方法。该公司的新型NorthPole处理器综合了上述方法的一些理念,并将其与一种非常精简的计算运行

去噪扩散模型(DDM)是目前广泛应用于图像生成的一种方法。最近,XinleiChen、ZhuangLiu、谢赛宁和何恺明四人团队对DDM进行了解构研究。通过逐步剥离其组件,他们发现DDM的生成能力逐渐下降,但表征学习能力仍然保持一定水平。这说明DDM中的某些组件对于表征学习的作用可能并不重要。针对当前计算机视觉等领域的生成模型,去噪被认为是一种核心方法。这类方法通常被称为去噪扩散模型(DDM),通过学习一个去噪自动编码器(DAE),能够通过扩散过程有效地消除多个层级的噪声。这些方法实现了出色的图


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
