Let's take a quick look at the fanout pattern in Go. In general, fanout is used to perform a number of tasks concurrently.
For example, say you have a data pipeline and you want to process the individual items. We can use go routines and channels to split the items up as we receive them, then process the individual items (put in a dB for example).
It's a simple pattern to implement; but you need to manage the channels to prevent deadlock.
// produce is simulating our single input as a channel func produce(id int) chan int { ch := make(chan int) go func() { for i := 0; i <p>The main idea here is that there is a sequence of data that need to be operated on by a fixed number of workers.</p> <p>For the input, we create a sequence of random numbers and place them in a channel. We them move them into another channel that the workers will pull their 'jobs' from. </p> <p><em>In this example, it's not strictly necessary to move the input into the jobs channel. We could just as easily have the workers pull from the input channel; it's just done for clarity here.</em></p> <p>We then send launch the fixed number of workers as goroutines. Each worker will pull from the jobs channel until there is no more data to process at which time it signals a WaitGroup that it is done.</p> <p>The main thread uses a WaitGroup to make sure it does not complete until all the workers are done, ie all jobs have been processed.</p> <p>A key point to mention that this pattern does not place any guarantees on the order of processing the input sequence. This may be fine in a lot of circumstances. For example, the input sequence are data records containing their own timestamp and the goal is to store the records in a dB. Fan-out in this case would be acceptable.</p> <p>A final note, you will see some comments on closing the channels once all data in the sequence has been sent. This is critical. The range operator that pulls from the channels will sleep once there is no more data. You can verify this by commenting out once of the close() statements which will cause a deadlock condition. Goroutines and channels are very powerful but you have to use them wisely.</p> <p>What would you do different? How can we improve this example? Leave your comments below.</p> <p>Thanks!</p> <p><em>The code for this post and all posts in this series can be found here</em> </p>
The above is the detailed content of Fanout Pattern. For more information, please follow other related articles on the PHP Chinese website!

Go's "strings" package provides rich features to make string operation efficient and simple. 1) Use strings.Contains() to check substrings. 2) strings.Split() can be used to parse data, but it should be used with caution to avoid performance problems. 3) strings.Join() is suitable for formatting strings, but for small datasets, looping = is more efficient. 4) For large strings, it is more efficient to build strings using strings.Builder.

Go uses the "strings" package for string operations. 1) Use strings.Join function to splice strings. 2) Use the strings.Contains function to find substrings. 3) Use the strings.Replace function to replace strings. These functions are efficient and easy to use and are suitable for various string processing tasks.

ThebytespackageinGoisessentialforefficientbyteslicemanipulation,offeringfunctionslikeContains,Index,andReplaceforsearchingandmodifyingbinarydata.Itenhancesperformanceandcodereadability,makingitavitaltoolforhandlingbinarydata,networkprotocols,andfileI

Go uses the "encoding/binary" package for binary encoding and decoding. 1) This package provides binary.Write and binary.Read functions for writing and reading data. 2) Pay attention to choosing the correct endian (such as BigEndian or LittleEndian). 3) Data alignment and error handling are also key to ensure the correctness and performance of the data.

The"bytes"packageinGooffersefficientfunctionsformanipulatingbyteslices.1)Usebytes.Joinforconcatenatingslices,2)bytes.Bufferforincrementalwriting,3)bytes.Indexorbytes.IndexByteforsearching,4)bytes.Readerforreadinginchunks,and5)bytes.SplitNor

Theencoding/binarypackageinGoiseffectiveforoptimizingbinaryoperationsduetoitssupportforendiannessandefficientdatahandling.Toenhanceperformance:1)Usebinary.NativeEndianfornativeendiannesstoavoidbyteswapping.2)BatchReadandWriteoperationstoreduceI/Oover

Go's bytes package is mainly used to efficiently process byte slices. 1) Using bytes.Buffer can efficiently perform string splicing to avoid unnecessary memory allocation. 2) The bytes.Equal function is used to quickly compare byte slices. 3) The bytes.Index, bytes.Split and bytes.ReplaceAll functions can be used to search and manipulate byte slices, but performance issues need to be paid attention to.

The byte package provides a variety of functions to efficiently process byte slices. 1) Use bytes.Contains to check the byte sequence. 2) Use bytes.Split to split byte slices. 3) Replace the byte sequence bytes.Replace. 4) Use bytes.Join to connect multiple byte slices. 5) Use bytes.Buffer to build data. 6) Combined bytes.Map for error processing and data verification.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
