Arrays

王林
王林Original
2024-07-25 22:24:23928browse

Arrays

MergeSort

One of the sorting algorithms with time complexity of O(nlogn) where n is the length of the given array.

///tc : O(nlogn)
//sc : O(n) for creating intermediate arrays a, b of size of part of subarray which is of size n
class Solution {
    public int[] sortArray(int[] nums) {
         merge(0,nums.length-1,nums);
         return nums;
    }
    public void merge(int start, int end, int arr[]){
        if(end>start){
            int mid = (start+end)/2;
            merge(start,mid,arr);
            merge(mid+1,end,arr);
            sort(start, mid,end, arr);
        }
    }
    public void sort(int start, int mid ,int end, int arr[]){
        int a[] = new int[mid-start+1];
        int b[] = new int[end-mid];
        for(int i = 0;i




<hr>

<p>Inversion count</p>

<p>How many comparison are needed before the arrays becomes sorted ( given index i, j of array arr[] , <strong>arr[i]> arr[j]</strong> ( for j> i) will increment the inversion count by 1 every time this condition is met.</p>

<p>note: <em>we can use the same merge sort approach to find the inversion count ( merge sort code have been changed a bit to make it more readable)</em><br>
</p>

<pre class="brush:php;toolbar:false">class Solution {
    // arr[]: Input Array
    // N : Size of the Array arr[]
    // Function to count inversions in the array.

    static long inversionCount(long arr[], int n) {
        // Your Code Here
       //we can use merge sort
       long temp[]= new long[n];
       return merge(0,n-1,arr,temp);


    }
    public static long merge(int start, int end, long arr[],long[] temp){
        long count = 0;
        if(end>start){
            int mid = (start+end)/2;
            count+=merge(start,mid,arr,temp);
            count+=merge(mid+1,end,arr,temp);
           count+=sort(start, mid,end, arr,temp);
        }
        return count;
    }
    public static long sort(int start, int mid ,int end, long arr[],long [] temp){
        long count = 0;
        int i = start;
        int j = mid+1;
        int k = start;

        while(i arr[j] then all the values after ith index including will be
                // greater that jth index value hence count += mid-i+1
            }
            k++;
        }
        while(i




          

            
  

            
        

The above is the detailed content of Arrays. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn