search
HomeTechnology peripheralsAIECCV 2024 | To improve the performance of GPT-4V and Gemini detection tasks, you need this prompt paradigm

ECCV 2024 | 提升GPT-4V、Gemini检测任务性能,你需要这种提示范式
The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

The authors of this article are from Zhejiang University, Shanghai Artificial Intelligence Laboratory, Chinese University of Hong Kong, University of Sydney and Oxford University. Author list: Wu Yixuan, Wang Yizhou, Tang Shixiang, Wu Wenhao, He Tong, Wanli Ouyang, Philip Torr, Jian Wu. Among them, the co-first author Wu Yixuan is a doctoral student at Zhejiang University, and Wang Yizhou is a scientific research assistant at the Shanghai Artificial Intelligence Laboratory. The corresponding author Tang Shixiang is a postdoctoral researcher at the Chinese University of Hong Kong.

Multimodal Large Language Models (MLLMs) have shown impressive capabilities in different tasks, despite this, the potential of these models in detection tasks is still underestimated. When precise coordinates are required in complex object detection tasks, the hallucinations of MLLMs often make them miss target objects or give inaccurate bounding boxes. In order to enable MLLMs for detection, existing work not only requires collecting large amounts of high-quality instruction data sets, but also fine-tuning open source models. While time-consuming and labor-intensive, it also fails to take advantage of the more powerful visual understanding capabilities of closed-source models. To this end, Zhejiang University, together with Shanghai Artificial Intelligence Laboratory and Oxford University, proposed DetToolChain, a new prompt paradigm that releases the detection capabilities of multi-modal large language models. Large multi-modal models can learn to detect accurately without training. Relevant research has been included in ECCV 2024.

In order to solve the problems of MLLM in detection tasks, DetToolChain starts from three points: (1) Design visual prompts for detection, which is more direct and effective for MLLM than traditional textual prompts. Understand position information, (2) break down detailed detection tasks into small and simple tasks, (3) use chain-of-thought to gradually optimize detection results, and avoid the illusion of large multi-modal models as much as possible.

Corresponding to the above insights, DetToolChain contains two key designs: (1) A comprehensive set of visual processing prompts (visual processing prompts), which are drawn directly in the image and can significantly narrow the gap between visual information and text information difference. (2) A comprehensive set of detection reasoning prompts to enhance the spatial understanding of the detection target and gradually determine the final precise target location through a sample-adaptive detection tool chain.

By combining DetToolChain with MLLM, such as GPT-4V and Gemini, various detection tasks can be supported without instruction tuning, including open vocabulary detection, description target detection, referential expression understanding and oriented target detection .

ECCV 2024 | 提升GPT-4V、Gemini检测任务性能,你需要这种提示范式

  • Paper title: DetToolChain: A New Prompting Paradigm to Unleash Detection Ability of MLLM
  • Paper link: https://arxiv.org/abs/2403.12488

What is DetToolChain?

ECCV 2024 | 提升GPT-4V、Gemini检测任务性能,你需要这种提示范式

                                                                                                                                                                                               Steps:

I. Formatting: Convert the original input format of the task into an appropriate instruction template as input to the MLLM;
II. Think: Break down a specific complex detection task into simpler subtasks and select effective tips from the detection tip toolkit ( prompts);
III. Execute: Iteratively execute specific prompts (prompts) in sequence;
IV. Respond: Use MLLM's own reasoning capabilities to supervise the entire detection process and return the final response (final answer).
Detection Prompt Toolkit: Visual Processing Prompts

Figure 2: Schematic diagram of visual processing prompts. We designed (1) Regional Amplifier, (2) Spatial Measurement Standard, (3) Scene Image Parser to improve the detection capabilities of MLLMs from different perspectives.

As shown in Figure 2, (1) Regional Amplifier aims to enhance the visibility of MLLMs on regions of interest (ROI), including cropping the original image into different sub-regions, focusing on the sub-regions where the target object is located. area; in addition, the zoom function enables fine-grained observation of specific sub-areas in the image.

(2) Spatial Measurement Standard provides a clearer reference for target detection by superimposing a ruler and compass with linear scales on the original image, as shown in Figure 2 (2). Auxiliary rulers and compasses enable MLLMs to output accurate coordinates and angles using translational and rotational references superimposed on the image. Essentially, this auxiliary line simplifies the detection task, allowing MLLMs to read the coordinates of objects instead of directly predicting them.

(3) Scene Image Parser marks the predicted object position or relationship, and uses spatial and contextual information to achieve spatial relationship understanding of the image. Scene Image Parser can be divided into two categories: First, for a single target object , we label the predicted object with centroid, convex hull and bounding box with label name and box index. These markers represent object position information in different formats, enabling MLLM to detect diverse objects of different shapes and backgrounds, especially objects with irregular shapes or heavy occlusions. For example, the convex hull marker marks the boundary points of an object and connects them into a convex hull to enhance the detection performance of very irregularly shaped objects. Secondly, for multi-objectives, we connect the centers of different objects through scene graph markers to highlight the relationship between objects in the image. Based on the scene graph, MLLM can leverage its contextual reasoning capabilities to optimize predicted bounding boxes and avoid hallucinations. For example, as shown in Figure 2 (3), Jerry wants to eat cheese, so their bounding boxes should be very close.

Detection Reasoning Prompts Toolkit: Detection Reasoning Prompts

ECCV 2024 | 提升GPT-4V、Gemini检测任务性能,你需要这种提示范式

To improve the reliability of the prediction box, we conducted detection reasoning prompts (shown in Table 1) to check the prediction results and diagnose possible potential problems. First, we propose Problem Insight Guider, which highlights difficult problems and provides effective detection suggestions and similar examples for query images. For example, for Figure 3, the Problem Insight Guider defines the query as a problem of small object detection and suggests solving it by zooming in on the surfboard area. Second, to leverage the inherent spatial and contextual capabilities of MLLMs, we design Spatial Relationship Explorer and Contextual Object Predictor to ensure that detection results are consistent with common sense. As shown in Figure 3, a surfboard may co-occur with the ocean (contextual knowledge), and there should be a surfboard near the surfer's feet (spatial knowledge). Furthermore, we apply Self-Verification Promoter to enhance the consistency of responses across multiple rounds. To further improve the reasoning capabilities of MLLMs, we adopt widely used prompting methods, such as debating and self-debugging. Please see the original text for a detailed description.

ECCV 2024 | 提升GPT-4V、Gemini检测任务性能,你需要这种提示范式

                                                                                                                      Detection inference hints can help MLLMs solve small object detection problems, for example, using common sense to locate a surfboard under a person’s feet, and encourage the model to detect surfboards in the ocean.

ECCV 2024 | 提升GPT-4V、Gemini检测任务性能,你需要这种提示范式

                                                                                                                                                                                                                                                                  Experiment: You can surpass the fine-tuning method without training

As shown in the table As shown in 2, we evaluated our method on open vocabulary detection (OVD), testing the AP50 results on 17 new classes, 48 ​​basic classes and all classes in the COCO OVD benchmark. The results show that the performance of both GPT-4V and Gemini is significantly improved using our DetToolChain.

ECCV 2024 | 提升GPT-4V、Gemini检测任务性能,你需要这种提示范式

Pour démontrer l'efficacité de notre méthode sur la compréhension des expressions référentielles, nous comparons notre méthode avec d'autres méthodes zero-shot sur les jeux de données RefCOCO, RefCOCO+ et RefCOCOg (Tableau 5). Sur RefCOCO, DetToolChain a amélioré les performances de la ligne de base GPT-4V de 44,53 %, 46,11 % et 24,85 % respectivement sur val, test-A et test-B, démontrant la compréhension et les performances supérieures de l'expression référentielle de DetToolChain dans des conditions de positionnement zéro.

The above is the detailed content of ECCV 2024 | To improve the performance of GPT-4V and Gemini detection tasks, you need this prompt paradigm. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议Dec 21, 2023 pm 03:25 PM

PowerInfer提高了在消费级硬件上运行AI的效率上海交大团队最新推出了超强CPU/GPULLM高速推理引擎PowerInfer。PowerInfer和llama.cpp都在相同的硬件上运行,并充分利用了RTX4090上的VRAM。这个推理引擎速度有多快?在单个NVIDIARTX4090GPU上运行LLM,PowerInfer的平均token生成速率为13.20tokens/s,峰值为29.08tokens/s,仅比顶级服务器A100GPU低18%,可适用于各种LLM。PowerInfer与

思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了Sep 05, 2023 pm 05:53 PM

要让大型语言模型(LLM)充分发挥其能力,有效的prompt设计方案是必不可少的,为此甚至出现了promptengineering(提示工程)这一新兴领域。在各种prompt设计方案中,思维链(CoT)凭借其强大的推理能力吸引了许多研究者和用户的眼球,基于其改进的CoT-SC以及更进一步的思维树(ToT)也收获了大量关注。近日,苏黎世联邦理工学院、Cledar和华沙理工大学的一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为LLM构建推理过程的能力不断得到提升,研究者也通

复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来Sep 23, 2023 am 09:01 AM

近期,复旦大学自然语言处理团队(FudanNLP)推出LLM-basedAgents综述论文,全文长达86页,共有600余篇参考文献!作者们从AIAgent的历史出发,全面梳理了基于大型语言模型的智能代理现状,包括:LLM-basedAgent的背景、构成、应用场景、以及备受关注的代理社会。同时,作者们探讨了Agent相关的前瞻开放问题,对于相关领域的未来发展趋势具有重要价值。论文链接:https://arxiv.org/pdf/2309.07864.pdfLLM-basedAgent论文列表:

吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了Mar 01, 2024 pm 10:55 PM

大型语言模型(LLM)被广泛应用于需要多个链式生成调用、高级提示技术、控制流以及与外部环境交互的复杂任务。尽管如此,目前用于编程和执行这些应用程序的高效系统却存在明显的不足之处。研究人员最近提出了一种新的结构化生成语言(StructuredGenerationLanguage),称为SGLang,旨在改进与LLM的交互性。通过整合后端运行时系统和前端语言的设计,SGLang使得LLM的性能更高、更易控制。这项研究也获得了机器学习领域的知名学者、CMU助理教授陈天奇的转发。总的来说,SGLang的

大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」Feb 02, 2024 pm 09:33 PM

将不同的基模型象征为不同品种的狗,其中相同的「狗形指纹」表明它们源自同一个基模型。大模型的预训练需要耗费大量的计算资源和数据,因此预训练模型的参数成为各大机构重点保护的核心竞争力和资产。然而,与传统软件知识产权保护不同,对预训练模型参数盗用的判断存在以下两个新问题:1)预训练模型的参数,尤其是千亿级别模型的参数,通常不会开源。预训练模型的输出和参数会受到后续处理步骤(如SFT、RLHF、continuepretraining等)的影响,这使得判断一个模型是否基于另一个现有模型微调得来变得困难。无

FATE 2.0发布:实现异构联邦学习系统互联FATE 2.0发布:实现异构联邦学习系统互联Jan 16, 2024 am 11:48 AM

FATE2.0全面升级,推动隐私计算联邦学习规模化应用FATE开源平台宣布发布FATE2.0版本,作为全球领先的联邦学习工业级开源框架。此次更新实现了联邦异构系统之间的互联互通,持续增强了隐私计算平台的互联互通能力。这一进展进一步推动了联邦学习与隐私计算规模化应用的发展。FATE2.0以全面互通为设计理念,采用开源方式对应用层、调度、通信、异构计算(算法)四个层面进行改造,实现了系统与系统、系统与算法、算法与算法之间异构互通的能力。FATE2.0的设计兼容了北京金融科技产业联盟的《金融业隐私计算

220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升Oct 23, 2023 pm 03:13 PM

IBM再度发力。随着AI系统的飞速发展,其能源需求也在不断增加。训练新系统需要大量的数据集和处理器时间,因此能耗极高。在某些情况下,执行一些训练好的系统,智能手机就能轻松胜任。但是,执行的次数太多,能耗也会增加。幸运的是,有很多方法可以降低后者的能耗。IBM和英特尔已经试验过模仿实际神经元行为设计的处理器。IBM还测试了在相变存储器中执行神经网络计算,以避免重复访问RAM。现在,IBM又推出了另一种方法。该公司的新型NorthPole处理器综合了上述方法的一些理念,并将其与一种非常精简的计算运行

制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了制作莫比乌斯环,最少需要多长纸带?50年来的谜题被解开了Oct 07, 2023 pm 06:17 PM

自己动手做过莫比乌斯带吗?莫比乌斯带是一种奇特的数学结构。要构造一个这样美丽的单面曲面其实非常简单,即使是小孩子也可以轻松完成。你只需要取一张纸带,扭曲一次,然后将两端粘在一起。然而,这样容易制作的莫比乌斯带却有着复杂的性质,长期吸引着数学家们的兴趣。最近,研究人员一直被一个看似简单的问题困扰着,那就是关于制作莫比乌斯带所需纸带的最短长度?布朗大学RichardEvanSchwartz谈到,对于莫比乌斯带来说,这个问题没有解决,因为它们是「嵌入的」而不是「浸入的」,这意味着它们不会相互渗透或自我

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.