Home >Java >javaTutorial >LeetCode Day Dynamic Programming Part 10

LeetCode Day Dynamic Programming Part 10

王林
王林Original
2024-07-19 13:07:01397browse

LeetCode Day Dynamic Programming Part 10

300. Longest Increasing Subsequence

Given an integer array nums, return the length of the longest strictly increasing
subsequence
.

Example 1:

Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:

Input: nums = [0,1,0,3,2,3]
Output: 4
Example 3:

Input: nums = [7,7,7,7,7,7,7]
Output: 1

Constraints:

1 <= nums.length <= 2500
-10^4 <= nums[i] <= 10^4

Follow up: Can you come up with an algorithm that runs in O(n log(n)) time complexity?
Original Page

Wrong Code

    public int lengthOfLIS(int[] nums) {
        int start = nums[0];
        int pre = nums[0];
        int preMax = nums[0];
        int cnt = 1;
        int max = 1;

        for(int i=1; i<nums.length; i++){
            if(nums[i] < start){
                max = Math.max(max, cnt);
                start = nums[i];
                cnt = 1;
            } 
            else if(nums[i] > pre){
                cnt ++;
            }
            pre = nums[i];
            System.out.println("cur:"+nums[i] + " pre:"+pre+ " count:" + cnt);
        }
        return Math.max(max, cnt);
    }


</p>
<h2>
  
  
  Fix bug
</h2>


<pre class="brush:php;toolbar:false">

Learn From others treemap

    public int lengthOfLIS(int[] nums) {


        TreeMap<Integer,Integer> map = new TreeMap<>();

        map.put(Integer.MIN_VALUE,0);

       for(int i: nums)
       {
           map.put(i,map.get(map.lowerKey(i))+1);
           while(map.higherKey(i)!=null && map.get(map.higherKey(i))<=map.get(i)) 
           {
            map.remove(map.higherKey(i));
           }
       }

       return map.get(map.lastKey());

    }

674. Longest Continuous Increasing Subsequence

Given an unsorted array of integers nums, return the length of the longest continuous increasing subsequence (i.e. subarray). The subsequence must be strictly increasing.

A continuous increasing subsequence is defined by two indices l and r (l < r) such that it is [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] and for each l <= i < r, nums[i] < nums[i + 1].

Example 1:

Input: nums = [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5] with length 3.
Even though [1,3,5,7] is an increasing subsequence, it is not continuous as elements 5 and 7 are separated by element
4.
Example 2:

Input: nums = [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2] with length 1. Note that it must be strictly
increasing.

Constraints:

1 <= nums.length <= 10^4
-10^9 <= nums[i] <= 10^9
Original Page

Greedy Algorithm

    public int findLengthOfLCIS(int[] nums) {
        if(nums.length < 1){
            return 0;
        }
        int res = 1;
        int cnt = 1;
        int pre = nums[0];
        for(int i=1; i<nums.length; i++){
            if(nums[i] > pre){
                cnt++;
            }else{
                res = Math.max(res, cnt);
                cnt = 1;
            }
            // System.out.println("cur: " + nums[i] + " pre:" + pre + " count:" + cnt);
            pre = nums[i];
        }
        return Math.max(res, cnt);
    }

Dynamic Programming

Different from the previous question, in this question we could only consider continuously increasing subsequences, which simplifies the process.






          

            
        

The above is the detailed content of LeetCode Day Dynamic Programming Part 10. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn