search
HomeBackend DevelopmentPython TutorialAdaBoost - Ensemble Method, Classification: Supervised Machine Learning

Boosting

Definition and Purpose

Boosting is an ensemble learning technique used in machine learning to improve the accuracy of models. It combines multiple weak classifiers (models that perform slightly better than random guessing) to create a strong classifier. The main purpose of boosting is to sequentially apply the weak classifiers to the data, correcting the errors made by the previous classifiers, and thus improve overall performance.

Key Objectives:

  • Improve Accuracy: Enhance the prediction accuracy by combining the outputs of several weak classifiers.
  • Reduce Bias and Variance: Address issues of bias and variance to achieve a better generalization of the model.
  • Handle Complex Data: Effectively model complex relationships in the data.

AdaBoost (Adaptive Boosting)

Definition and Purpose

AdaBoost, short for Adaptive Boosting, is a popular boosting algorithm. It adjusts the weights of incorrectly classified instances so that subsequent classifiers focus more on difficult cases. The main purpose of AdaBoost is to improve the performance of weak classifiers by emphasizing the hard-to-classify examples in each iteration.

Key Objectives:

  • Weight Adjustment: Increase the weight of misclassified instances to ensure the next classifier focuses on them.
  • Sequential Learning: Build classifiers sequentially, where each new classifier corrects the errors of its predecessor.
  • Improved Performance: Combine weak classifiers to form a strong classifier with better predictive power.

How AdaBoost Works

  1. Initialize Weights:

    • Assign equal weights to all training instances. For a dataset with n instances, each instance has a weight of 1/n.
  2. Train Weak Classifier:

    • Train a weak classifier using the weighted dataset.
  3. Calculate Classifier Error:

    • Compute the error of the weak classifier, which is the sum of the weights of misclassified instances.
  4. Compute Classifier Weight:

    • Calculate the weight of the classifier based on its error. The weight is given by: alpha = 0.5 * log((1 - error) / error)
    • A lower error results in a higher classifier weight.
  5. Update Weights of Instances:

    • Adjust the weights of the instances. Increase the weights of misclassified instances and decrease the weights of correctly classified instances.
    • The updated weight for instance i is: weight[i] = weight[i] * exp(alpha * (misclassified ? 1 : -1))
    • Normalize the weights to ensure they sum to 1.
  6. Combine Weak Classifiers:

    • The final strong classifier is a weighted sum of the weak classifiers: Final classifier = sign(sum(alpha * weak_classifier))
    • The sign function determines the class label based on the sum.

AdaBoost (Binary Classification) Example

AdaBoost, short for Adaptive Boosting, is an ensemble technique that combines multiple weak classifiers to create a strong classifier. This example demonstrates how to implement AdaBoost for binary classification using synthetic data, evaluate the model's performance, and visualize the decision boundary.

Python Code Example

1. Import Libraries

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

This block imports the necessary libraries for data manipulation, plotting, and machine learning.

2. Generate Sample Data

np.random.seed(42)  # For reproducibility

# Generate synthetic data for 2 classes
n_samples = 1000
n_samples_per_class = n_samples // 2

# Class 0: Centered around (-1, -1)
X0 = np.random.randn(n_samples_per_class, 2) * 0.7 + [-1, -1]

# Class 1: Centered around (1, 1)
X1 = np.random.randn(n_samples_per_class, 2) * 0.7 + [1, 1]

# Combine the data
X = np.vstack([X0, X1])
y = np.hstack([np.zeros(n_samples_per_class), np.ones(n_samples_per_class)])

# Shuffle the dataset
shuffle_idx = np.random.permutation(n_samples)
X, y = X[shuffle_idx], y[shuffle_idx]

This block generates synthetic data with two features, where the target variable y is defined based on the class center, simulating a binary classification scenario.

3. Split the Dataset

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

This block splits the dataset into training and testing sets for model evaluation.

4. Create and Train the AdaBoost Classifier

base_estimator = DecisionTreeClassifier(max_depth=1)  # Decision stump
model = AdaBoostClassifier(estimator=base_estimator, n_estimators=3, random_state=42)
model.fit(X_train, y_train)

This block initializes the AdaBoost model with a decision stump as the base estimator and trains it using the training dataset.

5. Make Predictions

y_pred = model.predict(X_test)

This block uses the trained model to make predictions on the test set.

6. Evaluate the Model

accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)

print(f"Accuracy: {accuracy:.4f}")
print("\nConfusion Matrix:")
print(conf_matrix)
print("\nClassification Report:")
print(class_report)

Output:

Accuracy: 0.9400

Confusion Matrix:
[[96  8]
 [ 4 92]]

Classification Report:
              precision    recall  f1-score   support

         0.0       0.96      0.92      0.94       104
         1.0       0.92      0.96      0.94        96

    accuracy                           0.94       200
   macro avg       0.94      0.94      0.94       200
weighted avg       0.94      0.94      0.94       200

This block calculates and prints the accuracy, confusion matrix, and classification report, providing insights into the model's performance.

7. Visualize the Decision Boundary

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
                     np.arange(y_min, y_max, 0.1))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.figure(figsize=(10, 8))
plt.contourf(xx, yy, Z, alpha=0.4, cmap='RdYlBu')
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, cmap='RdYlBu', edgecolor='black')
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.title("AdaBoost Binary Classification")
plt.colorbar(scatter)
plt.show()

This block visualizes the decision boundary created by the AdaBoost model, illustrating how the model separates the two classes in the feature space.

Output:

AdaBoost Binary Classification

This structured approach demonstrates how to implement and evaluate AdaBoost for binary classification tasks, providing a clear understanding of its capabilities. The visualization of the decision boundary aids in interpreting the model's predictions.

AdaBoost (Multiclass Classification) Example

AdaBoost is an ensemble learning technique that combines multiple weak classifiers to create a strong classifier. This example demonstrates how to implement AdaBoost for multiclass classification using synthetic data, evaluate the model's performance, and visualize the decision boundary for five classes.

Python Code Example

1. Import Libraries

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

This block imports the necessary libraries for data manipulation, plotting, and machine learning.

2. Generate Sample Data with 5 Classes

np.random.seed(42)  # For reproducibility
n_samples = 2500  # Total number of samples
n_samples_per_class = n_samples // 5  # Ensure this is exactly n_samples // 5

# Class 0: Centered around (-2, -2)
X0 = np.random.randn(n_samples_per_class, 2) * 0.5 + [-2, -2]

# Class 1: Centered around (0, -2)
X1 = np.random.randn(n_samples_per_class, 2) * 0.5 + [0, -2]

# Class 2: Centered around (2, -2)
X2 = np.random.randn(n_samples_per_class, 2) * 0.5 + [2, -2]

# Class 3: Centered around (-1, 2)
X3 = np.random.randn(n_samples_per_class, 2) * 0.5 + [-1, 2]

# Class 4: Centered around (1, 2)
X4 = np.random.randn(n_samples_per_class, 2) * 0.5 + [1, 2]

# Combine the data
X = np.vstack([X0, X1, X2, X3, X4])
y = np.hstack([np.zeros(n_samples_per_class), 
               np.ones(n_samples_per_class),
               np.full(n_samples_per_class, 2),
               np.full(n_samples_per_class, 3),
               np.full(n_samples_per_class, 4)])

# Shuffle the dataset
shuffle_idx = np.random.permutation(n_samples)
X, y = X[shuffle_idx], y[shuffle_idx]

This block generates synthetic data for five classes located in different regions of the feature space.

3. Split the Dataset

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

This block splits the dataset into training and testing sets for model evaluation.

4. Create and Train the AdaBoost Classifier

base_estimator = DecisionTreeClassifier(max_depth=1)  # Decision stump
model = AdaBoostClassifier(estimator=base_estimator, n_estimators=10, random_state=42)
model.fit(X_train, y_train)

This block initializes the AdaBoost classifier with a weak learner (decision stump) and trains it using the training dataset.

5. Make Predictions

y_pred = model.predict(X_test)

This block uses the trained model to make predictions on the test set.

6. Evaluate the Model

accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)

print(f"Accuracy: {accuracy:.4f}")
print("\nConfusion Matrix:")
print(conf_matrix)
print("\nClassification Report:")
print(class_report)

Output:

Accuracy: 0.9540

Confusion Matrix:
[[ 97   2   0   0   0]
 [  0  92   3   0   0]
 [  0   4  92   0   0]
 [  0   0   0  86  14]
 [  0   0   0   0 110]]

Classification Report:
              precision    recall  f1-score   support

         0.0       1.00      0.98      0.99        99
         1.0       0.94      0.97      0.95        95
         2.0       0.97      0.96      0.96        96
         3.0       1.00      0.86      0.92       100
         4.0       0.89      1.00      0.94       110

    accuracy                           0.95       500
   macro avg       0.96      0.95      0.95       500
weighted avg       0.96      0.95      0.95       500

This block calculates and prints the accuracy, confusion matrix, and classification report, providing insights into the model's performance.

7. Visualize the Decision Boundary

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
                     np.arange(y_min, y_max, 0.1))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.figure(figsize=(12, 10))
plt.contourf(xx, yy, Z, alpha=0.4, cmap='viridis')
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', edgecolor='black')
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.title("AdaBoost Multiclass Classification (5 Classes)")
plt.colorbar(scatter)
plt.show()

This block visualizes the decision boundaries created by the AdaBoost classifier, illustrating how the model separates the five classes in the feature space.

Output:

AdaBoost - Ensemble Method, Classification: Supervised Machine Learning

This structured approach demonstrates how to implement and evaluate AdaBoost for multiclass classification tasks, providing a clear understanding of its capabilities and the effectiveness of visualizing decision boundaries.

The above is the detailed content of AdaBoost - Ensemble Method, Classification: Supervised Machine Learning. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Image Filtering in PythonImage Filtering in PythonMar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

Introduction to Parallel and Concurrent Programming in PythonIntroduction to Parallel and Concurrent Programming in PythonMar 03, 2025 am 10:32 AM

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

How to Implement Your Own Data Structure in PythonHow to Implement Your Own Data Structure in PythonMar 03, 2025 am 09:28 AM

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use