


Monads are a fundamental concept in functional programming that provide a way to handle computations and data transformations in a structured manner. There are various types of monads, each designed to solve specific problems and handle different kinds of data and effects.
What is a Monad?
A monad is an abstraction that allows for the chaining of operations on wrapped values. It is defined by three primary properties:
- Unit (also called of or return): A function that takes a value and wraps it in a monad.
- Bind (also called flatMap or chain): A function that takes a monadic value and a function that returns a monad, applies the function to the wrapped value, and returns a new monad.
- Associativity: The composition of monadic operations should be associative.
Common Types of Monads
- Maybe Monad
- Either Monad
- Promise Monad
- List Monad
- Reader Monad
- Writer Monad
- State Monad
1. Maybe Monad
The Maybe Monad is used to handle optional values. It represents a computation that might fail or return null or undefined.
Implementation
class Maybe { constructor(value) { this.value = value; } static of(value) { return new Maybe(value); } isNothing() { return this.value === null || this.value === undefined; } map(fn) { return this.isNothing() ? this : Maybe.of(fn(this.value)); } flatMap(fn) { return this.isNothing() ? this : fn(this.value); } } // Usage const maybeValue = Maybe.of('hello') .map(str => str.toUpperCase()) .flatMap(str => Maybe.of(`${str} WORLD`)); console.log(maybeValue); // Maybe { value: 'HELLO WORLD' }
2. Either Monad
The Either Monad is used to handle computations that can return either a success value (Right) or an error value (Left).
Implementation
class Either { constructor(value, isRight = true) { this.value = value; this.isRight = isRight; } static right(value) { return new Either(value, true); } static left(value) { return new Either(value, false); } map(fn) { return this.isRight ? Either.right(fn(this.value)) : this; } flatMap(fn) { return this.isRight ? fn(this.value) : this; } } // Usage const rightValue = Either.right(5) .map(x => x + 1) .flatMap(x => Either.right(x * 2)); console.log(rightValue); // Either { value: 12, isRight: true } const leftValue = Either.left('error') .map(x => x + 1) .flatMap(x => Either.right(x * 2)); console.log(leftValue); // Either { value: 'error', isRight: false }
3. Promise Monad
The Promise Monad is used to handle asynchronous computations.
Usage
const fetchData = url => { return new Promise((resolve, reject) => { setTimeout(() => { resolve(`Data from ${url}`); }, 1000); }); }; // Usage fetchData('https://api.example.com') .then(data => { console.log(data); // 'Data from https://api.example.com' return fetchData('https://api.example.com/2'); }) .then(data => { console.log(data); // 'Data from https://api.example.com/2' }) .catch(error => { console.error(error); });
4. List Monad
The List Monad is used to handle computations that produce a list of values.
Implementation
class List { constructor(values) { this.values = values; } static of(values) { return new List(values); } map(fn) { return List.of(this.values.map(fn)); } flatMap(fn) { return List.of(this.values.flatMap(value => fn(value).values)); } } // Usage const list = List.of([1, 2, 3]) .map(x => x + 1) .flatMap(x => List.of([x, x * 2])); console.log(list); // List { values: [ 2, 4, 3, 6, 4, 8 ] }
5. Reader Monad
The Reader Monad is used to handle computations that depend on some shared environment or configuration.
Implementation
class Reader { constructor(fn) { this.fn = fn; } static of(value) { return new Reader(() => value); } map(fn) { return new Reader(env => fn(this.fn(env))); } flatMap(fn) { return new Reader(env => fn(this.fn(env)).fn(env)); } run(env) { return this.fn(env); } } // Usage const config = { baseURL: 'https://api.example.com' }; const fetchUser = new Reader(env => `${env.baseURL}/user`); const fetchPosts = new Reader(env => `${env.baseURL}/posts`); const fetchUserAndPosts = fetchUser.flatMap(userURL => fetchPosts.map(postsURL => ({ userURL, postsURL })) ); console.log(fetchUserAndPosts.run(config)); // { userURL: 'https://api.example.com/user', postsURL: 'https://api.example.com/posts' }
6. Writer Monad
The Writer Monad is used to handle computations that produce a value along with a log or additional data.
Implementation
class Writer { constructor(value, log) { this.value = value; this.log = log; } static of(value) { return new Writer(value, ''); } map(fn) { const result = fn(this.value); return new Writer(result.value, this.log + result.log); } flatMap(fn) { const result = fn(this.value); return new Writer(result.value, this.log + result.log); } tell(log) { return new Writer(this.value, this.log + log); } } // Usage const writer = Writer.of(3) .map(value => new Writer(value + 1, 'Incremented\n')) .flatMap(value => new Writer(value * 2, 'Doubled\n')); console.log(writer); // Writer { value: 8, log: 'Incremented\nDoubled\n' }
7. State Monad
The State Monad is used to handle computations that maintain state.
Implementation
class State { constructor(runState) { this.runState = runState; } static of(value) { return new State(state => [value, state]); } map(fn) { return new State(state => { const [value, newState] = this.runState(state); return [fn(value), newState]; }); } flatMap(fn) { return new State(state => { const [value, newState] = this.runState(state); return fn(value).runState(newState); }); } run(initialState) { return this.runState(initialState); } } // Usage const increment = new State(state => [state + 1, state + 1]); const result = increment .flatMap(() => increment) .flatMap(() => increment) .run(0); console.log(result); // [3, 3]
Conclusion
Monads provide a structured and predictable way to handle computations and data transformations in functional programming. Each type of monad serves a specific purpose, from handling optional values with the Maybe Monad to managing asynchronous operations with the Promise Monad.
The above is the detailed content of Introduction to Functional Programming in JavaScript: Different monads #11. For more information, please follow other related articles on the PHP Chinese website!

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

Python is more suitable for data science and machine learning, while JavaScript is more suitable for front-end and full-stack development. 1. Python is known for its concise syntax and rich library ecosystem, and is suitable for data analysis and web development. 2. JavaScript is the core of front-end development. Node.js supports server-side programming and is suitable for full-stack development.

JavaScript does not require installation because it is already built into modern browsers. You just need a text editor and a browser to get started. 1) In the browser environment, run it by embedding the HTML file through tags. 2) In the Node.js environment, after downloading and installing Node.js, run the JavaScript file through the command line.

How to send task notifications in Quartz In advance When using the Quartz timer to schedule a task, the execution time of the task is set by the cron expression. Now...

How to obtain the parameters of functions on prototype chains in JavaScript In JavaScript programming, understanding and manipulating function parameters on prototype chains is a common and important task...

Analysis of the reason why the dynamic style displacement failure of using Vue.js in the WeChat applet web-view is using Vue.js...

How to make concurrent GET requests for multiple links and judge in sequence to return results? In Tampermonkey scripts, we often need to use multiple chains...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version
SublimeText3 Linux latest version

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version
Chinese version, very easy to use

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.