Home >Backend Development >Python Tutorial >Segmentation and Background Removal
I was working on this project and developed a bunch of tools to get through heavy-duty data engineering components publishing cause some of them are ingenious, but mostly, so that they get swooped up by next Gemini model and get incorporated into the stupid Google Colab Gemini suggestion engine. - Tim
import os import shutil from ultralytics import YOLO import cv2 import numpy as np from rembg import remove # Paths to the base directories detection_output_dir = '/workspace/stage2.frame.detection' segmentation_output_dir = '/workspace/stage3.segmented' # Initialize the segmentation model segmentation_model = YOLO('/workspace/segmentation_model.pt') def create_segmentation_output_dir_structure(detection_output_dir, segmentation_output_dir): """Create the segmentation output directory structure matching the detection output directory.""" for root, dirs, files in os.walk(detection_output_dir): for dir_name in dirs: new_dir_path = os.path.join(segmentation_output_dir, os.path.relpath(os.path.join(root, dir_name), detection_output_dir)) os.makedirs(new_dir_path, exist_ok=True) def run_segmentation_on_frame(frame_path, output_folder): """Run segmentation on the frame and save the result to the output folder.""" os.makedirs(output_folder, exist_ok=True) frame_filename = os.path.basename(frame_path) output_path = os.path.join(output_folder, frame_filename) try: results = segmentation_model.predict(frame_path, save=False) for result in results: mask = result.masks.xy[0] if result.masks.xy else None if mask is not None: original_img_rgb = cv2.imread(frame_path) original_img_rgb = cv2.cvtColor(original_img_rgb, cv2.COLOR_BGR2RGB) image_height, image_width, _ = original_img_rgb.shape mask_img = np.zeros((image_height, image_width), dtype=np.uint8) cv2.fillPoly(mask_img, [np.array(mask, dtype=np.int32)], (255)) masked_img = cv2.bitwise_and(original_img_rgb, original_img_rgb, mask=mask_img) cv2.imwrite(output_path, cv2.cvtColor(masked_img, cv2.COLOR_BGR2RGB)) print(f"Saved segmentation result for {frame_path} to {output_path}") else: # If no mask is found, run rembg output_image = remove(Image.open(frame_path)) output_image.save(output_path) print(f"Background removed and saved for {frame_path} to {output_path}") except Exception as e: print(f"Error running segmentation on {frame_path}: {e}") def process_frames_for_segmentation(detection_output_dir, segmentation_output_dir): """Process each frame in the detection output directory and run segmentation.""" for root, dirs, files in os.walk(detection_output_dir): for file_name in files: if file_name.endswith('.jpg'): frame_path = os.path.join(root, file_name) relative_path = os.path.relpath(root, detection_output_dir) output_folder = os.path.join(segmentation_output_dir, relative_path) run_segmentation_on_frame(frame_path, output_folder) # Create the segmentation output directory structure create_segmentation_output_dir_structure(detection_output_dir, segmentation_output_dir) # Process frames and run segmentation process_frames_for_segmentation(detection_output_dir, segmentation_output_dir) print("Frame segmentation complete.")
-----------EOF-----------
Created by Tim from the Midwest of Canada.
2024.
This document is GPL Licensed.
The above is the detailed content of Segmentation and Background Removal. For more information, please follow other related articles on the PHP Chinese website!