search
HomeJavajavaTutorialData API for Amazon Aurora Serverless vith AWS SDK for Java - Part ptimization strategies for the cold and warm starts

Data API for Amazon Aurora Serverless vith AWS SDK for Java - Part ptimization strategies for the cold and warm starts

Introduction

In the previous articles of the series about how to connect to Amazon Aurora Serverless v2 from the Lambda function with Data API and AWS SDK for Java we did basic cold and warm starts measurements, compared cold and warm starts between Data API and JDBC and measured effect with SnapStart with and without priming.

In this part of the series we'll introduce optimization strategies for the cold and warm starts.

Optimization strategies for the cold and warm starts

To find a good balance between cold and warm start times you can try out the optimization techniques introduced below. I have not done any measurements with those using Data API and Amazon Aurora Serverless v2 with PostgreSQL database but with similar scenario using DynamoDB database instead. I'll provide references to my relevant articles.

  • Try out different Lambda memory settings. All measurements until now have been performed with 1024 MB memory for the Lambda function. With different memory settings you might become better performance for a justifiable price. See my article Measuring cold and warm starts and deployment time with Java 21 using different Lambda memory settings for explanations measurements with DynamoDB.
  • Try out different Java compilation options for the Lambda function. All measurements until now have been performed with the compilation option "-XX:+TieredCompilation -XX:TieredStopAtLevel=1" for the Lambda function. There are more other options that can be provided to the Lambda function using environment variable called JAVA_TOOL_OPTIONS which can have different cold and warm starts trade offs. See my article Measuring cold and warm starts with Java 21 using different compilation options for explanations measurements with DynamoDB.
  • Try out different synchronous HTTP clients to establish HTTP connection to the database via Data API. All measurements until now have been performed with the default synchronous HTTP Client which is Apache. There are other options like UrlConnection and AWS CRT HTTP clients which provide different performance trade offs for the cold and warm starts.

This is the example of using AWS CRT HTTP client when creating/building the RdsDataClient. URLConnection client can be set similarly.

RdsDataClient.builder().httpClient(AwsCrtHttpClient.create()).build()

Also don't forget to incldue the dependency to the HTTP client in use to the pom.xml like this:

     <dependency>
        <groupid>software.amazon.awssdk</groupid>
        <artifactid>aws-crt-client</artifactid>
     </dependency>

See my article Measuring cold and warm starts with Java 21 using different synchronous HTTP clients for explanations, code examples and measurements with DynamoDB.

  • Explore whether asynchronous HTTP client for Data API is an option for your use case. The default asynchronous HTTP Client is NettyNio. There is another option AWS CRT async HTTP client which provides different performance trade offs for the cold and warm starts.

This is the example of using asynchronous AWS CRT HTTP client when creating/building the RdsDataAsyncClient (which we need to build in case of using asynchronous HTTP Client).

RdsDataAsyncClient.builder().httpClient(AwsCrtAsyncHttpClient.create()).build()

Also don't forget to incldue the dependency to the HTTP client in use to the pom.xml like this:

     <dependency>
        <groupid>software.amazon.awssdk</groupid>
        <artifactid>aws-crt-client</artifactid>
     </dependency>

In this case we have to use Java asynchronous programming model (which is the discussion topic on its own) and therefore each method invocation on the RDSDataAsyncClient will return Java CompletableFuture object. See my article Measuring cold and warm starts with Java 21 using different asynchronous HTTP clients for explanations, code examples and measurements with DynamoDB.

For all potential optimization strategies you can enable SnapStart on the Lambda function and additionally measure the impact of the DynamoDB invocation priming as described in the previous article Data API meets SnapStart of the series.

Also be aware of the impact of the snapshot tiered cache on the cold starts which I described in my article. As I always provide cold start measurements for the first 100 cold starts after deploying the new version of the Lambda function. With the tiered cache in use, I measured and described that the cold start significantly reduces with more subsequent invocations. After certain amount of invocations it then remains constant for the specific Lambda version.

Conclusion

In this article we provided optimization strategies for the cold and warm starts using Data API for Amazon Aurora Serverless v2 with AWS SDK for Java which you can explore to find out the best performance for your use own case.

The above is the detailed content of Data API for Amazon Aurora Serverless vith AWS SDK for Java - Part ptimization strategies for the cold and warm starts. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Top 4 JavaScript Frameworks in 2025: React, Angular, Vue, SvelteTop 4 JavaScript Frameworks in 2025: React, Angular, Vue, SvelteMar 07, 2025 pm 06:09 PM

This article analyzes the top four JavaScript frameworks (React, Angular, Vue, Svelte) in 2025, comparing their performance, scalability, and future prospects. While all remain dominant due to strong communities and ecosystems, their relative popul

How do I implement multi-level caching in Java applications using libraries like Caffeine or Guava Cache?How do I implement multi-level caching in Java applications using libraries like Caffeine or Guava Cache?Mar 17, 2025 pm 05:44 PM

The article discusses implementing multi-level caching in Java using Caffeine and Guava Cache to enhance application performance. It covers setup, integration, and performance benefits, along with configuration and eviction policy management best pra

Node.js 20: Key Performance Boosts and New FeaturesNode.js 20: Key Performance Boosts and New FeaturesMar 07, 2025 pm 06:12 PM

Node.js 20 significantly enhances performance via V8 engine improvements, notably faster garbage collection and I/O. New features include better WebAssembly support and refined debugging tools, boosting developer productivity and application speed.

How does Java's classloading mechanism work, including different classloaders and their delegation models?How does Java's classloading mechanism work, including different classloaders and their delegation models?Mar 17, 2025 pm 05:35 PM

Java's classloading involves loading, linking, and initializing classes using a hierarchical system with Bootstrap, Extension, and Application classloaders. The parent delegation model ensures core classes are loaded first, affecting custom class loa

Iceberg: The Future of Data Lake TablesIceberg: The Future of Data Lake TablesMar 07, 2025 pm 06:31 PM

Iceberg, an open table format for large analytical datasets, improves data lake performance and scalability. It addresses limitations of Parquet/ORC through internal metadata management, enabling efficient schema evolution, time travel, concurrent w

Spring Boot SnakeYAML 2.0 CVE-2022-1471 Issue FixedSpring Boot SnakeYAML 2.0 CVE-2022-1471 Issue FixedMar 07, 2025 pm 05:52 PM

This article addresses the CVE-2022-1471 vulnerability in SnakeYAML, a critical flaw allowing remote code execution. It details how upgrading Spring Boot applications to SnakeYAML 1.33 or later mitigates this risk, emphasizing that dependency updat

How can I use JPA (Java Persistence API) for object-relational mapping with advanced features like caching and lazy loading?How can I use JPA (Java Persistence API) for object-relational mapping with advanced features like caching and lazy loading?Mar 17, 2025 pm 05:43 PM

The article discusses using JPA for object-relational mapping with advanced features like caching and lazy loading. It covers setup, entity mapping, and best practices for optimizing performance while highlighting potential pitfalls.[159 characters]

How can I implement functional programming techniques in Java?How can I implement functional programming techniques in Java?Mar 11, 2025 pm 05:51 PM

This article explores integrating functional programming into Java using lambda expressions, Streams API, method references, and Optional. It highlights benefits like improved code readability and maintainability through conciseness and immutability

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.