search
HomeTechnology peripheralsAIIn just a few seconds, protein dynamics information can be accurately inferred. AI models such as Shandong University and Beijing Institute of Technology RMSF-net are published in Nature sub-journals.

In just a few seconds, protein dynamics information can be accurately inferred. AI models such as Shandong University and Beijing Institute of Technology RMSF-net are published in Nature sub-journals.

Editor | KX

The dynamics of a protein are crucial to understanding its mechanism. However, computationally predicting protein kinetic information is challenging.

Here, a research team from Shandong University, BioMap, Beijing Institute of Technology, Hubei Medical College, Ningxia Medical University and King Abdullah University of Science and Technology (KAUST) proposed a neural network model RMSF -net, which outperforms previous methods and produces the best results in large-scale protein dynamics data sets; the model can accurately infer the dynamics information of a protein in seconds.

By effectively learning from the integration of experimental protein structure data and cryo-EM data, this method is able to accurately identify interactive bidirectional constraints and supervision between cryo-EM images and PDB models to maximize Improve the efficiency of dynamics prediction.

RMSF-net is a free-to-use tool that will play an important role in protein dynamics studies.

The study was titled "Accurate Prediction of Protein Structural Flexibility by Deep Learning Integrating Intricate Atomic Structures and Cryo-EM Density Information" and was published in "Nature Communications" on July 2.

In just a few seconds, protein dynamics information can be accurately inferred. AI models such as Shandong University and Beijing Institute of Technology RMSF-net are published in Nature sub-journals.

Paper link:
  • https://www.nature.com/articles/s41467-024-49858-x

RMSF-net GitHub address:

  • https://github. com/XintSong/RMSF-net

Protein Dynamics

Protein dynamics are crucial in understanding their mechanisms. Cryo-electron microscopy (cryo-EM) technology can resolve most proteins, where the macromolecular structure is represented by a 3D density map.

Limitations of cryo-electron microscopy

Due to the low resolution and signal-to-noise ratio of the original 2D particle images, cryo-electron microscopy analysis cannot resolve small conformational changes during reconstruction.

Application of deep learning in cryo-electron microscopy

Deep learning methods are widely used in the automatic analysis of cryo-electron microscopy images. Using high-resolution cryo-EM maps, a Protein Data Bank (PDB) model can be constructed from the cryo-EM maps.

RMSF-net Overview

RMSF-net is a neural network model for cryo-electron microscopy density maps. It leverages cryo-EM density and PDB model information to accurately infer protein dynamic information in seconds.

RMSF

RMSF is a widely used measurement method for assessing the flexibility of molecular structures in molecular dynamics (MD) analyses. Its main purpose is to predict the RMSF of local structures (residues, atoms) within a protein.

In just a few seconds, protein dynamics information can be accurately inferred. AI models such as Shandong University and Beijing Institute of Technology RMSF-net are published in Nature sub-journals.

Image: RMSF-net. (Source: paper)

In addition to cryo-EM images, RMSF-net utilizes PDB models as additional input to produce RMSF predictions that are very close to the MD simulation results.

RMSF-net is a three-dimensional convolutional neural network containing two interconnected modules. The main module uses Unet+ (L3) architecture to encode and decode features of input density boxes. Another module utilizes 1x1 convolutions to regress the channels of the feature maps generated by the Unet+backbone. Center clipping is then applied to the regression module output to obtain a centered RMSF subbox, where the voxel value corresponds to the RMSF of the atoms contained within it. Finally, the RMSF subboxes are spatially merged into an RMSF map using a merging algorithm.

In addition, the researchers also constructed a large-scale protein dynamics dataset for training and validation of RMSF-net, in which 335 cryo-EM structural entries with fitted PDB models were selected and corresponding MD simulations were performed. Comprehensive experimental results demonstrate the efficiency and effectiveness of RMSF-net.

Table: Performance of different RMSF prediction methods on the data set. (Source: paper)

In just a few seconds, protein dynamics information can be accurately inferred. AI models such as Shandong University and Beijing Institute of Technology RMSF-net are published in Nature sub-journals.

Accuracy of kinetic prediction

RMSF-net performed well in rigorous 5-fold cross-validation, with a correlation coefficient of 0.746±0.127 with MD simulation results. The correlation coefficient of RMSF-net is improved by 15% compared to DEFMap and by 10% compared to the baseline method.

Interpretability of dynamics predictions

Researchers enhanced the interpretability of RMSF-net dynamics predictions through comparative experiments. They divide the RMSF forecasting process into two steps:

  1. 結構資訊擷取(Occ2RMSF-net)
  2. 基於提取​​的結構資訊進行動力學預測

研究表明,基於低溫電子顯微鏡圖譜的模型(例如DEFMap 或RMSF-net_cryo)的動力學預測主要透過解讀蛋白質結構實現。這突顯了蛋白質拓樸結構與動力學之間的聯繫,符合結構-功能關係的第一原理。

In just a few seconds, protein dynamics information can be accurately inferred. AI models such as Shandong University and Beijing Institute of Technology RMSF-net are published in Nature sub-journals.

圖示:RMSF-net 與其他相關方法的效能比較。 (資料來源:論文)

此外,透過對RMSF-net_cryo、RMSF-net_pdb 和最終的雙組合RMSF-net 進行全面比較,證明了:一方面,來自PDB 模型的結構資訊在RMSF-net 中起主要作用,其中深度模型從MD 模擬中學習結構拓撲和靈活性之間的模式,另一方面,低溫電子顯微鏡圖譜異質密度分佈中包含的動力學資訊進一步增強了模型。這些結果驗證了低溫電子顯微鏡圖和 PDB 模型的資訊對 RMSF-net 中的蛋白質動力學預測的互補作用。

局限性與未來方向

不可否認的是,RMSF-net 主要限於預測純蛋白質及其複合物在溶液中的柔韌性。對於蛋白質在與小分子配體結合或在膜環境中的動力學特性,該方法在某些局部區域可能會表現出不準確性。

RMSF-net 的卓越性能揭示了進一步研究該方向的可行性。該研究還沒有擴展到核酸和蛋白質-核酸複合物。綜合表徵大分子動力學的各個方面,包括多構象預測和轉變分析,在未來需要進一步進行廣泛而深入的研究。

儘管如此,作為預測蛋白質動力學的工具,RMSF-net 由於其優越的性能和超快的處理速度,在蛋白質結構和動力學研究中仍有很大的應用前景。

註:封面來自網路

The above is the detailed content of In just a few seconds, protein dynamics information can be accurately inferred. AI models such as Shandong University and Beijing Institute of Technology RMSF-net are published in Nature sub-journals.. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
五个时间序列预测的深度学习模型对比总结五个时间序列预测的深度学习模型对比总结May 05, 2023 pm 05:16 PM

MakridakisM-Competitions系列(分别称为M4和M5)分别在2018年和2020年举办(M6也在今年举办了)。对于那些不了解的人来说,m系列得比赛可以被认为是时间序列生态系统的一种现有状态的总结,为当前得预测的理论和实践提供了经验和客观的证据。2018年M4的结果表明,纯粹的“ML”方法在很大程度上胜过传统的统计方法,这在当时是出乎意料的。在两年后的M5[1]中,最的高分是仅具有“ML”方法。并且所有前50名基本上都是基于ML的(大部分是树型模型)。这场比赛看到了LightG

RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶Oct 27, 2023 pm 03:13 PM

在一项最新的研究中,来自UW和Meta的研究者提出了一种新的解码算法,将AlphaGo采用的蒙特卡洛树搜索算法(Monte-CarloTreeSearch,MCTS)应用到经过近端策略优化(ProximalPolicyOptimization,PPO)训练的RLHF语言模型上,大幅提高了模型生成文本的质量。PPO-MCTS算法通过探索与评估若干条候选序列,搜索到更优的解码策略。通过PPO-MCTS生成的文本能更好满足任务要求。论文链接:https://arxiv.org/pdf/2309.150

MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子Jan 04, 2024 pm 05:38 PM

编辑|X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自MIT的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了3000多个反应,其中1000多个产生了预测的反应产物,提出、合成并表征了303种未报道的染料样分子。该研究以《Autonom

AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊Apr 17, 2024 am 08:40 AM

作者|陈旭鹏编辑|ScienceAI由于神经系统的缺陷导致的失语会导致严重的生活障碍,它可能会限制人们的职业和社交生活。近年来,深度学习和脑机接口(BCI)技术的飞速发展为开发能够帮助失语者沟通的神经语音假肢提供了可行性。然而,神经信号的语音解码面临挑战。近日,约旦大学VideoLab和FlinkerLab的研究者开发了一个新型的可微分语音合成器,可以利用一个轻型的卷积神经网络将语音编码为一系列可解释的语音参数(例如音高、响度、共振峰频率等),并通过可微分神经网络将这些参数合成为语音。这个合成器

准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊Mar 27, 2024 pm 02:16 PM

编辑|紫罗可合成分子的化学空间是非常广阔的。有效地探索这个领域需要依赖计算筛选技术,比如深度学习,以便快速地发现各种有趣的化合物。将分子结构转换为数字表示形式,并开发相应算法生成新的分子结构是进行化学发现的关键。最近,英国格拉斯哥大学的研究团队提出了一种基于电子密度训练的机器学习模型,用于生成主客体binders。这种模型能够以简化分子线性输入规范(SMILES)格式读取数据,准确率高达98%,从而实现对分子在二维空间的全面描述。通过变分自编码器生成主客体系统的电子密度和静电势的三维表示,然后通

Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Aug 26, 2023 pm 09:01 PM

昨天,Meta开源专攻代码生成的基础模型CodeLlama,可免费用于研究以及商用目的。CodeLlama系列模型有三个参数版本,参数量分别为7B、13B和34B。并且支持多种编程语言,包括Python、C++、Java、PHP、Typescript(Javascript)、C#和Bash。Meta提供的CodeLlama版本包括:代码Llama,基础代码模型;代码羊-Python,Python微调版本;代码Llama-Instruct,自然语言指令微调版就其效果来说,CodeLlama的不同版

手机摄影技术让以假乱真的好莱坞级电影特效视频走红手机摄影技术让以假乱真的好莱坞级电影特效视频走红Sep 07, 2023 am 09:41 AM

一个普通人用一台手机就能制作电影特效的时代已经来了。最近,一个名叫Simulon的3D技术公司发布了一系列特效视频,视频中的3D机器人与环境无缝融合,而且光影效果非常自然。呈现这些效果的APP也叫Simulon,它能让使用者通过手机摄像头的实时拍摄,直接渲染出CGI(计算机生成图像)特效,就跟打开美颜相机拍摄一样。在具体操作中,你要先上传一个3D模型(比如图中的机器人)。Simulon会将这个模型放置到你拍摄的现实世界中,并使用准确的照明、阴影和反射效果来渲染它们。整个过程不需要相机解算、HDR

背景与前景控制更加精细,编辑更加快捷:BEVControl的两阶段方法背景与前景控制更加精细,编辑更加快捷:BEVControl的两阶段方法Sep 07, 2023 pm 11:21 PM

本文将介绍一种通过BEVSketch布局来精确生成多视角街景图片的方法在自动驾驶领域,图像合成被广泛应用于提升下游感知任务的性能在计算机视觉领域,提升感知模型性能的一个长期存在的研究难题是通过合成图像来实现。在以视觉为中心的自动驾驶系统中,使用多视角摄像头,这个问题变得更加突出,因为有些长尾场景是永远无法收集到的根据图1(a)所示,现有的生成方法将语义分割风格的BEV结构输入生成网络,并输出合理的多视角图像。在仅根据场景级指标进行评估时,现有方法似乎能合成照片般逼真的街景图像。然而,一旦放大,我

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version