search
HomeTechnology peripheralsAIBytedance Doubao and Wuhan University proposed CAL: enhancing multi-modal alignment effects through visually related tokens

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果
The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

The current mainstream visual language model (VLM) is mainly based on the large language model (LLM) for further fine-tuning. Therefore, it is necessary to map the image to the embedding space of LLM in various ways, and then use autoregressive methods to predict the answer based on the image token.

In this process, modal alignment is implicitly implemented through text tokens. How to align this step well is very critical.

In response to this problem, researchers from Wuhan University, ByteDance Beanbao Large Model Team and the University of Chinese Academy of Sciences proposed a text token screening method (CAL) based on contrastive learning to screen out text Tokens that are highly related to the image are increased in weight of the loss function to achieve more accurate multi-modal alignment.

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果

  • Paper link: https://arxiv.org/pdf/2405.17871
  • Code link: https://github.com/foundation-multimodal-models/CAL

CAL has the following highlights:

  • can be directly nested into the training process without additional pre-training stage.
  • has achieved significant improvements in OCR and Caption benchmarks. From the visualization, it can be found that CAL makes the image modal alignment better.
  • CAL makes the training process more resistant to noisy data.

Research motivation

Currently, visual language models rely on the alignment of image modalities, and how to do alignment is very critical. The current mainstream method is to perform implicit alignment through text autoregression, but the contribution of each text token to image alignment is inconsistent. It is very necessary to distinguish these text tokens.

CAL proposed that in the existing visual language model (VLM) training data, text tokens can be divided into three categories:

  • Text that is highly related to pictures: such as entities ( Such as people, animals, objects), quantity, color, text, etc. These tokens directly correspond to image information and are crucial for multi-modal alignment.
  • Text with low correlation to the picture: Such as following words or content that can be inferred from the previous text. These tokens are actually mainly used to train the plain text capabilities of VLM.
  • Text that contradicts the image content: These tokens are inconsistent with image information and may even provide misleading information, negatively affecting the multi-modal alignment process.

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果标 Figure 1: The green mark is related to the high -related Token, the red is the contrary to the content, and the colorless is the neutral Token

During the training process, the latter two types of token are actually actually occupy a larger proportion, but because they are not strongly dependent on the image, they have little effect on the modal alignment of the image. Therefore, in order to achieve better alignment, it is necessary to increase the weight of the first type of text tokens, that is, the tokens that are highly related to the image. How to find this part of the token has become the key to solving this problem.

Method

Finding tokens that are highly related to the image This problem can be solved by condition contrastive.
For each image-text pair in the training data, without image input, the logit on each text token represents LLM’s estimate of the occurrence of this situation based on context and existing knowledge. value.
  • If you add image input in front, it is equivalent to providing additional contextual information. In this case, the logit of each text token will be adjusted based on the new situation. The logit changes in these two cases represent the impact of the new condition of the picture on each text token.
  • Specifically, during the training process, CAL inputs the image and text sequences and individual text sequences into the large language model (LLM) respectively to obtain the logit of each text token. By calculating the logit difference between these two cases, we can measure the impact of the image on each token. The larger the logit difference, the greater the impact of the image on the token, so the token is more relevant to the image. The figure below shows the flow chart of the logit diff and CAL methods for text tokens.对 Figure 2: The left picture is the visualization of the token logit diff in the two situations. The picture on the right is the visualization of the CAL method process

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果Cal in Llava Experimental verification was conducted on two mainstream models: MGM and MGM, and performance improvements were achieved in models of different sizes.
Contains the following four parts of verification:

(1) Models using CAL perform better on various benchmark indicators.


(2) Create a batch of noise data (image-text mismatch) by randomly exchanging the text in the two image-text pairs in proportion and use it for model training. CAL makes the training process Has stronger data anti-noise performance.度 Figure 3: In the case of noise training at different intensity, the performance of CAL and the baseline

(3) calculates the attention scores of the picture token in the answer part of QA Case, And plotting it on the original image, the CAL-trained model has a clearer attention distribution map.

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果

C Figure 4: The baseline and CAL's Attention Map can be visualized. The right side of each pair is CAL
(4) to the text token to the text token in its most similar LLM vocabulary. Drawing it onto the original image, the CAL-trained model mapping content is closer to the image content. A Figure 5: Imam into the Image Token as the most similar vocabulary, and correspond to the original picture. The model team was established in 2023 and is committed to developing the industry's most advanced AI large model technology, becoming a world-class research team, and contributing to technological and social development.

字节豆包、武大提出 CAL:通过视觉相关的 token 增强多模态对齐效果
The Doubao Big Model team has long-term vision and determination in the field of AI. Its research directions cover NLP, CV, speech, etc., and it has laboratories and research positions in China, Singapore, the United States and other places. Relying on the platform's sufficient data, computing and other resources, the team continues to invest in related fields. It has launched a self-developed general large model to provide multi-modal capabilities. The downstream supports 50+ businesses such as Doubao, Buttons, and Jimeng, and is open to the volcano engine. Corporate customers. At present, Doubao APP has become the AIGC application with the largest number of users in the Chinese market. Welcome to join the ByteDance Beanbao model team.

The above is the detailed content of Bytedance Doubao and Wuhan University proposed CAL: enhancing multi-modal alignment effects through visually related tokens. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
The AI Skills Gap Is Slowing Down Supply ChainsThe AI Skills Gap Is Slowing Down Supply ChainsApr 26, 2025 am 11:13 AM

The term "AI-ready workforce" is frequently used, but what does it truly mean in the supply chain industry? According to Abe Eshkenazi, CEO of the Association for Supply Chain Management (ASCM), it signifies professionals capable of critic

How One Company Is Quietly Working To Transform AI ForeverHow One Company Is Quietly Working To Transform AI ForeverApr 26, 2025 am 11:12 AM

The decentralized AI revolution is quietly gaining momentum. This Friday in Austin, Texas, the Bittensor Endgame Summit marks a pivotal moment, transitioning decentralized AI (DeAI) from theory to practical application. Unlike the glitzy commercial

Nvidia Releases NeMo Microservices To Streamline AI Agent DevelopmentNvidia Releases NeMo Microservices To Streamline AI Agent DevelopmentApr 26, 2025 am 11:11 AM

Enterprise AI faces data integration challenges The application of enterprise AI faces a major challenge: building systems that can maintain accuracy and practicality by continuously learning business data. NeMo microservices solve this problem by creating what Nvidia describes as "data flywheel", allowing AI systems to remain relevant through continuous exposure to enterprise information and user interaction. This newly launched toolkit contains five key microservices: NeMo Customizer handles fine-tuning of large language models with higher training throughput. NeMo Evaluator provides simplified evaluation of AI models for custom benchmarks. NeMo Guardrails implements security controls to maintain compliance and appropriateness

AI Paints A New Picture For The Future Of Art And DesignAI Paints A New Picture For The Future Of Art And DesignApr 26, 2025 am 11:10 AM

AI: The Future of Art and Design Artificial intelligence (AI) is changing the field of art and design in unprecedented ways, and its impact is no longer limited to amateurs, but more profoundly affecting professionals. Artwork and design schemes generated by AI are rapidly replacing traditional material images and designers in many transactional design activities such as advertising, social media image generation and web design. However, professional artists and designers also find the practical value of AI. They use AI as an auxiliary tool to explore new aesthetic possibilities, blend different styles, and create novel visual effects. AI helps artists and designers automate repetitive tasks, propose different design elements and provide creative input. AI supports style transfer, which is to apply a style of image

How Zoom Is Revolutionizing Work With Agentic AI: From Meetings To MilestonesHow Zoom Is Revolutionizing Work With Agentic AI: From Meetings To MilestonesApr 26, 2025 am 11:09 AM

Zoom, initially known for its video conferencing platform, is leading a workplace revolution with its innovative use of agentic AI. A recent conversation with Zoom's CTO, XD Huang, revealed the company's ambitious vision. Defining Agentic AI Huang d

The Existential Threat To UniversitiesThe Existential Threat To UniversitiesApr 26, 2025 am 11:08 AM

Will AI revolutionize education? This question is prompting serious reflection among educators and stakeholders. The integration of AI into education presents both opportunities and challenges. As Matthew Lynch of The Tech Edvocate notes, universit

The Prototype: American Scientists Are Looking For Jobs AbroadThe Prototype: American Scientists Are Looking For Jobs AbroadApr 26, 2025 am 11:07 AM

The development of scientific research and technology in the United States may face challenges, perhaps due to budget cuts. According to Nature, the number of American scientists applying for overseas jobs increased by 32% from January to March 2025 compared with the same period in 2024. A previous poll showed that 75% of the researchers surveyed were considering searching for jobs in Europe and Canada. Hundreds of NIH and NSF grants have been terminated in the past few months, with NIH’s new grants down by about $2.3 billion this year, a drop of nearly one-third. The leaked budget proposal shows that the Trump administration is considering sharply cutting budgets for scientific institutions, with a possible reduction of up to 50%. The turmoil in the field of basic research has also affected one of the major advantages of the United States: attracting overseas talents. 35

All About Open AI's Latest GPT 4.1 Family - Analytics VidhyaAll About Open AI's Latest GPT 4.1 Family - Analytics VidhyaApr 26, 2025 am 10:19 AM

OpenAI unveils the powerful GPT-4.1 series: a family of three advanced language models designed for real-world applications. This significant leap forward offers faster response times, enhanced comprehension, and drastically reduced costs compared t

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function