search
HomeTechnology peripheralsAIYoloCS: Effectively reduce the space complexity of feature maps

YoloCS: Effectively reduce the space complexity of feature maps

Paper address: YOLOCS: Object Detection based on Dense Channel Compression for Feature Spatial Solidification (arxiv.org)

01 Total Description

In today’s sharing, the researchers examined the correlation between channel features and convolution kernels during feature purification and gradient backpropagation, focusing on the forward and backward directions within the network. spread. Therefore, the researchers proposed a feature space solidification method called dense channel compression. Based on the core concepts of the method, two innovative modules for backbone and head networks are introduced: dense channel compression (DCFS) for feature space solidification and asymmetric multi-level compression decoupled head (ADH). When integrated into the YOLOv5 model, these two modules demonstrated extraordinary performance, resulting in an improved model known as YOLOCS.

YoloCS: Effectively reduce the space complexity of feature maps YoloCS: Effectively reduce the space complexity of feature maps

Evaluated on the MSCOCO data set, the AP of the large, medium and small YOLOCS models are 50.1%, 47.6% and 42.5% respectively . While maintaining a similar inference speed to the YOLOv5 model, the large, medium, and small YOLOCS models achieved 1.1%, 2.3%, and 5.2% advantages over YOLOv5's AP respectively.

02 Background

In recent years, target detection technology has received widespread attention in the field of computer vision. Among them, the target detection technology based on the single shot multi-box algorithm (Single Shot Multi Box Detector, referred to as SSD) and the target detection technology based on the convolutional neural network (Convolutional Neural Networks, referred to as CNN) are the two most commonly used target detection technologies. However, due to the low accuracy of the single-shot multi-frame algorithm and the high computational complexity of target detection technology based on convolutional neural networks, finding an efficient and high-precision target detection technology has become a hot spot in current research. one.

YoloCS: Effectively reduce the space complexity of feature maps

Dense Channel Compression (DCC) is a new convolutional neural network compression technology that compresses the feature map of the convolutional neural network. Perform spatial solidification to achieve compression and acceleration of network parameters. However, the application of DCC technology in the field of target detection has not been fully studied. Dense Channel Compression (DCC) technology aims to improve computational efficiency by reducing the number of network parameters. Specifically, DCC reduces the number of parameters of the convolutional layer by performing channel compression on the output feature map of the convolutional layer. This compression technique can be achieved by removing redundant and unnecessary channels, or using methods such as low-rank decomposition. Although DCC technology is effective in image classification tasks

YoloCS: Effectively reduce the space complexity of feature maps

Therefore, a target detection technology based on Dense Channel Compression is proposed, named YOLOCS (YOLO with Dense Channel Compression). YOLOCS technology combines DCC technology with the YOLO (You Only Look Once) algorithm to achieve efficient and high-precision processing of target detection. Specifically, YOLOCS technology uses DCC technology to spatially solidify the feature map, thereby achieving precise positioning of the target position; at the same time, YOLOCS technology uses the single-shot multi-frame algorithm characteristics of the YOLO algorithm to achieve target classification. Quick calculation.

03 New Framework

  • Dense Channel Compression for Feature Spatial Solidification Structure (DCFS)

YoloCS: Effectively reduce the space complexity of feature maps

In the proposed method (above (c)), the researchers not only solved the balance problem between network width and depth, but also solved the problem of network width and depth through 3 × 3 volumes. The product compresses features from different depth layers, reducing the number of channels by half before outputting and fusing features. This approach enables researchers to refine feature outputs from different layers to a greater extent, thereby enhancing feature diversity and effectiveness during the fusion stage.

In addition, the compressed features from each layer are carried with larger convolution kernel weights (3×3), effectively expanding the receptive field of the output features. This approach is called feature space solidified dense channel compression. The rationale behind dense channel compression for feature space solidification relies on utilizing larger convolution kernels to facilitate channel compression. This technique has two key advantages: First, it expands the receptive field of feature perception during forward propagation, thereby ensuring that region-related feature details are incorporated to minimize feature loss throughout the compression stage. Second, the enhancement of error details during error backpropagation allows for more accurate weight adjustment.

To further illustrate these two advantages, convolution with two different kernel types (1×1 and 3×3) is used to compress the two channels, as shown below:

YoloCS: Effectively reduce the space complexity of feature maps

#The network structure of DCFS is shown in the figure below. A three-layer bottleneck structure is adopted to gradually compress the channel during the network forward propagation process. Half-channel 3×3 convolution is applied to all branches, followed by batch normalization (BN) and activation function layers. Subsequently, a 1 × 1 convolutional layer is used to compress the output feature channels to match the input feature channels.

YoloCS: Effectively reduce the space complexity of feature maps

  • ##Asymmetric Multi-level Channel Compression Decoupled Head (ADH)

In order to solve the decoupling head problem in the YOLOX model, the researchers conducted a series of studies and experiments. The results reveal a logical correlation between the utilization of decoupled head structures and the associated loss functions. Specifically, for different tasks, the structure of the decoupling head should be adjusted according to the complexity of the loss calculation. In addition, when the decoupled head structure is applied to various tasks, directly compressing the feature channels of the previous layer (as shown below) into task channels may result in significant feature loss due to differences in final output dimensions. This, in turn, can adversely affect the overall performance of the model.

YoloCS: Effectively reduce the space complexity of feature maps

# Additionally, when considering the proposed dense channel compression method for feature space solidification, the number of channels in the final layer is directly reduced to match the output Channels may cause feature loss during forward propagation, thus degrading network performance. At the same time, in the context of backpropagation, this structure may lead to suboptimal error backpropagation, hindering the achievement of gradient stability. To address these challenges, a new decoupling head is introduced, called an asymmetric multi-stage compression decoupling head (see Figure (b) below).

YoloCS: Effectively reduce the space complexity of feature maps

#Specifically, the researchers deepened the network path dedicated to the target scoring task and used 3 convolutions to expand the perception of this task field and number of parameters. At the same time, the features of each convolutional layer are compressed along the channel dimension. This method not only effectively alleviates the training difficulty related to the target scoring task and improves model performance, but also greatly reduces the parameters and GFLOPs of the decoupled head module, thereby significantly improving the inference speed. Furthermore, 1 convolutional layer is used to separate the classification and bounding box tasks. This is because for matched positive samples, the losses associated with both tasks are relatively small, thus avoiding over-extension. This approach significantly reduces parameters and GFLOPs in the decoupling header, ultimately increasing inference speed.

04 Experiment Visualization

Ablation Experiment on MS-COCO val2017

YoloCS: Effectively reduce the space complexity of feature maps

Comparison of YOLOCS, YOLOX and YOLOv5- r6.1[7] in terms of AP on MS-COCO 2017 test-dev

YoloCS: Effectively reduce the space complexity of feature maps

YoloCS: Effectively reduce the space complexity of feature maps


The above is the detailed content of YoloCS: Effectively reduce the space complexity of feature maps. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
I Tried Vibe Coding with Cursor AI and It's Amazing!I Tried Vibe Coding with Cursor AI and It's Amazing!Mar 20, 2025 pm 03:34 PM

Vibe coding is reshaping the world of software development by letting us create applications using natural language instead of endless lines of code. Inspired by visionaries like Andrej Karpathy, this innovative approach lets dev

Replit Agent: A Guide With Practical ExamplesReplit Agent: A Guide With Practical ExamplesMar 04, 2025 am 10:52 AM

Revolutionizing App Development: A Deep Dive into Replit Agent Tired of wrestling with complex development environments and obscure configuration files? Replit Agent aims to simplify the process of transforming ideas into functional apps. This AI-p

Top 5 GenAI Launches of February 2025: GPT-4.5, Grok-3 & More!Top 5 GenAI Launches of February 2025: GPT-4.5, Grok-3 & More!Mar 22, 2025 am 10:58 AM

February 2025 has been yet another game-changing month for generative AI, bringing us some of the most anticipated model upgrades and groundbreaking new features. From xAI’s Grok 3 and Anthropic’s Claude 3.7 Sonnet, to OpenAI’s G

How to Use YOLO v12 for Object Detection?How to Use YOLO v12 for Object Detection?Mar 22, 2025 am 11:07 AM

YOLO (You Only Look Once) has been a leading real-time object detection framework, with each iteration improving upon the previous versions. The latest version YOLO v12 introduces advancements that significantly enhance accuracy

How to Use DALL-E 3: Tips, Examples, and FeaturesHow to Use DALL-E 3: Tips, Examples, and FeaturesMar 09, 2025 pm 01:00 PM

DALL-E 3: A Generative AI Image Creation Tool Generative AI is revolutionizing content creation, and DALL-E 3, OpenAI's latest image generation model, is at the forefront. Released in October 2023, it builds upon its predecessors, DALL-E and DALL-E 2

Elon Musk & Sam Altman Clash over $500 Billion Stargate ProjectElon Musk & Sam Altman Clash over $500 Billion Stargate ProjectMar 08, 2025 am 11:15 AM

The $500 billion Stargate AI project, backed by tech giants like OpenAI, SoftBank, Oracle, and Nvidia, and supported by the U.S. government, aims to solidify American AI leadership. This ambitious undertaking promises a future shaped by AI advanceme

5 Grok 3 Prompts that Can Make Your Work Easy5 Grok 3 Prompts that Can Make Your Work EasyMar 04, 2025 am 10:54 AM

Grok 3 – Elon Musk and xAi’s latest AI model is the talk of the town these days. From Andrej Karpathy to tech influencers, everyone is talking about the capabilities of this new model. Initially, access was limited to

Google's GenCast: Weather Forecasting With GenCast Mini DemoGoogle's GenCast: Weather Forecasting With GenCast Mini DemoMar 16, 2025 pm 01:46 PM

Google DeepMind's GenCast: A Revolutionary AI for Weather Forecasting Weather forecasting has undergone a dramatic transformation, moving from rudimentary observations to sophisticated AI-powered predictions. Google DeepMind's GenCast, a groundbreak

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.