search
HomeTechnology peripheralsAIRevealing 100 years of global ocean deoxygenation, Shanghai Jiao Tong University uses artificial intelligence to reconstruct the 'suffocating ocean', ICML has included

Revealing 100 years of global ocean deoxygenation, Shanghai Jiao Tong University uses artificial intelligence to reconstruct the suffocating ocean, ICML has included

Author | Lu Bin, Han Luyu

Marine dissolved oxygen is a key factor in maintaining the function of marine ecosystems. With the impact of global warming and human activities, the ocean has shown a trend of deoxygenation in recent years. The increasingly suffocating ocean has serious consequences for fishery development, climate regulation and other aspects.

Recently, the team of Professors Wang Xinbing and Gan Xiaoying from the School of Electronic Information and Electrical Engineering of Shanghai Jiao Tong University, together with Academician Zhang Jing, Professor Zhou Lei and Associate Professor Zhou Yuntao from the School of Oceanography of Shanghai Jiao Tong University, jointly proposed a sparse ocean observation data driver The deep learning model OxyGenerator. For the first time, the century-old global ocean dissolved oxygen data from 1920 to 2023 was reconstructed, and the reconstruction performance significantly exceeded the results of the CMIP6 series of numerical models dominated by expert experience.

The research result "OxyGenerator: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning" has been selected by the China Computer Society Class A Conference International Conference on Machine Learning (ICML)Recruitment provides strong data support for the analysis of complex oxygen cycles and climate regulation, and is an active attempt to integrate artificial intelligence and oceanography.

Over the past century, the issue of declining ocean oxygen levels caused by climate change has attracted widespread attention. Among the tools for understanding long-term changes in the OMZ, the rapid expansion of OMZ30 (oxygen minimum zone) is considered a key indicator. By 2023, the ocean area in 1920 has tripled. This finding is important for understanding long-term changes in the OMZ and will help better ocean monitoring and protection in the future.

Revealing 100 years of global ocean deoxygenation, Shanghai Jiao Tong University uses artificial intelligence to reconstruct the suffocating ocean, ICML has included

Paper link: http://arxiv.org/abs/2405.07233

In order to comprehensively and deeply understand ocean deoxygenation, from the effective To explore the oxygen cycle and its changing patterns in the data, in 2017 Schmidtko and other researchers published the article "Decline in global oceanic oxygen content during the past five decades" in "Nature", which was the first time to use space The interpolation method enables the reconstruction and quantitative analysis of global ocean dissolved oxygen data since 1960.

Assessing the specific impacts of long-term human activities since the Industrial Revolution, reconstructing the dissolution climate record of the past fifty years is far from sufficient. Highly sparse historical observations and spatial interpolation methods with limited accuracy have become important bottlenecks in solving the problem.

Revealing 100 years of global ocean deoxygenation, Shanghai Jiao Tong University uses artificial intelligence to reconstruct the suffocating ocean, ICML has included

Observation data from five major public dissolved oxygen databases including World Ocean Database 2018, CLIVAR and Carbon Hydrographic Database, Argo, Global Ocean Data Analysis Project version2.2022, and Geotraces IDP. amount, and the missing rate of ocean observation data exceeds 90%

To this end, the research team of Shanghai Jiao Tong University has brought together ocean survey data since 1900, including scientific research vessel voyage survey data, Argo buoy observation data, and real-time observations of deep-sea submersible buoys. There are a total of 6 billion pieces of dissolved oxygen related data (the amount of stored data is about 2TB), and unified quality control is carried out.

Taking into account the irregular edges of ocean water bodies and the non-uniform characteristics of highly sparse observation data, a four-dimensional spatio-temporal graph network was established through the idea of ​​graph modeling, fully considering the spatial correlation and high values ​​​​in geography. Measurement samples realize the cross-temporal information transfer between observation data and missing data.

In view of the fact that the concentration changes of ocean dissolved oxygen are affected by both ocean physical and biochemical variables, a multi-layer perceptron is first used to extract non-linear features of multi-element data, and is dissolved through a two-way long short-term memory network Mining the temporal variation characteristics of oxygen observations.

Secondly, since the global ocean presents heterogeneous spatiotemporal correlations in different historical periods and regions, inspired by the idea of ​​oceanographic zoning, a graph message passing mechanism with adaptive variable zoning (Zoning-Varying Message-Passing) is proposed. ), through the super network parameter generation algorithm, perform affine transformation on graph messages in different partitions to achieve variable partition graph information transmission.

Finally, the fusion of oceanographic domain knowledge helps calibrate the uncertainty of neural networks. This study takes the ideal balance ratio of nitrogen, phosphorus, and oxygen in the ocean (Redfield Ratio) and designs a gradient regularization method embedded with chemical knowledge to eliminate signal anomalies in the reconstruction results as much as possible.

Revealing 100 years of global ocean deoxygenation, Shanghai Jiao Tong University uses artificial intelligence to reconstruct the suffocating ocean, ICML has included

OxyGenerator Ocean Deoxygenation Reconstruction Framework

After multi-fold cross-validation with observed variables, and comparison with the results of three sets of CMIP6 numerical models led by experts, this study The proposed OxyGenerator achieved the best performance in all four reconstruction performance evaluation indicators, with a MAPE reduction of 38.77%, greatly reducing the reconstruction error in the open ocean.

Revealing 100 years of global ocean deoxygenation, Shanghai Jiao Tong University uses artificial intelligence to reconstruct the suffocating ocean, ICML has included

Comparison of experimental performance between OxyGenerator and CMIP6

In areas such as the Western Pacific with sufficient observation data and the Black Sea affected by special environmental conditions, OxyGenerator performs particularly well, with model performance in remained stable for hundreds of years. At the same time, the results well reconstruct the disturbance of dissolved oxygen distribution caused by special climate events such as El Niño/La Niña in historical periods, and also accurately reflect the large-time-scale water movement characteristics such as thermohaline circulation.

This research is the result of deep intersection and close cooperation between artificial intelligence and marine science, and has opened up new ideas for addressing global climate challenges. In the future, the team will continue to promote in-depth cooperative data-driven geoscience discovery research, and actively develop research in the field of advanced technology empowering scientific intelligence (AI for Science).

The above is the detailed content of Revealing 100 years of global ocean deoxygenation, Shanghai Jiao Tong University uses artificial intelligence to reconstruct the 'suffocating ocean', ICML has included. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
五个时间序列预测的深度学习模型对比总结五个时间序列预测的深度学习模型对比总结May 05, 2023 pm 05:16 PM

MakridakisM-Competitions系列(分别称为M4和M5)分别在2018年和2020年举办(M6也在今年举办了)。对于那些不了解的人来说,m系列得比赛可以被认为是时间序列生态系统的一种现有状态的总结,为当前得预测的理论和实践提供了经验和客观的证据。2018年M4的结果表明,纯粹的“ML”方法在很大程度上胜过传统的统计方法,这在当时是出乎意料的。在两年后的M5[1]中,最的高分是仅具有“ML”方法。并且所有前50名基本上都是基于ML的(大部分是树型模型)。这场比赛看到了LightG

RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶RLHF与AlphaGo核心技术强强联合,UW/Meta让文本生成能力再上新台阶Oct 27, 2023 pm 03:13 PM

在一项最新的研究中,来自UW和Meta的研究者提出了一种新的解码算法,将AlphaGo采用的蒙特卡洛树搜索算法(Monte-CarloTreeSearch,MCTS)应用到经过近端策略优化(ProximalPolicyOptimization,PPO)训练的RLHF语言模型上,大幅提高了模型生成文本的质量。PPO-MCTS算法通过探索与评估若干条候选序列,搜索到更优的解码策略。通过PPO-MCTS生成的文本能更好满足任务要求。论文链接:https://arxiv.org/pdf/2309.150

MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子MIT团队运用机器学习闭环自主分子发现平台,成功发现、合成和描述了303种新分子Jan 04, 2024 pm 05:38 PM

编辑|X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自MIT的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了3000多个反应,其中1000多个产生了预测的反应产物,提出、合成并表征了303种未报道的染料样分子。该研究以《Autonom

AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊AI助力脑机接口研究,纽约大学突破性神经语音解码技术,登Nature子刊Apr 17, 2024 am 08:40 AM

作者|陈旭鹏编辑|ScienceAI由于神经系统的缺陷导致的失语会导致严重的生活障碍,它可能会限制人们的职业和社交生活。近年来,深度学习和脑机接口(BCI)技术的飞速发展为开发能够帮助失语者沟通的神经语音假肢提供了可行性。然而,神经信号的语音解码面临挑战。近日,约旦大学VideoLab和FlinkerLab的研究者开发了一个新型的可微分语音合成器,可以利用一个轻型的卷积神经网络将语音编码为一系列可解释的语音参数(例如音高、响度、共振峰频率等),并通过可微分神经网络将这些参数合成为语音。这个合成器

Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Code Llama代码能力飙升,微调版HumanEval得分超越GPT-4,一天发布Aug 26, 2023 pm 09:01 PM

昨天,Meta开源专攻代码生成的基础模型CodeLlama,可免费用于研究以及商用目的。CodeLlama系列模型有三个参数版本,参数量分别为7B、13B和34B。并且支持多种编程语言,包括Python、C++、Java、PHP、Typescript(Javascript)、C#和Bash。Meta提供的CodeLlama版本包括:代码Llama,基础代码模型;代码羊-Python,Python微调版本;代码Llama-Instruct,自然语言指令微调版就其效果来说,CodeLlama的不同版

准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊准确率 >98%,基于电子密度的 GPT 用于化学研究,登 Nature 子刊Mar 27, 2024 pm 02:16 PM

编辑|紫罗可合成分子的化学空间是非常广阔的。有效地探索这个领域需要依赖计算筛选技术,比如深度学习,以便快速地发现各种有趣的化合物。将分子结构转换为数字表示形式,并开发相应算法生成新的分子结构是进行化学发现的关键。最近,英国格拉斯哥大学的研究团队提出了一种基于电子密度训练的机器学习模型,用于生成主客体binders。这种模型能够以简化分子线性输入规范(SMILES)格式读取数据,准确率高达98%,从而实现对分子在二维空间的全面描述。通过变分自编码器生成主客体系统的电子密度和静电势的三维表示,然后通

手机摄影技术让以假乱真的好莱坞级电影特效视频走红手机摄影技术让以假乱真的好莱坞级电影特效视频走红Sep 07, 2023 am 09:41 AM

一个普通人用一台手机就能制作电影特效的时代已经来了。最近,一个名叫Simulon的3D技术公司发布了一系列特效视频,视频中的3D机器人与环境无缝融合,而且光影效果非常自然。呈现这些效果的APP也叫Simulon,它能让使用者通过手机摄像头的实时拍摄,直接渲染出CGI(计算机生成图像)特效,就跟打开美颜相机拍摄一样。在具体操作中,你要先上传一个3D模型(比如图中的机器人)。Simulon会将这个模型放置到你拍摄的现实世界中,并使用准确的照明、阴影和反射效果来渲染它们。整个过程不需要相机解算、HDR

谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐谷歌用大型模型训练机器狗理解模糊指令,激动不已准备去野餐Jan 16, 2024 am 11:24 AM

人类和四足机器人之间简单有效的交互是创造能干的智能助理机器人的途径,其昭示着这样一个未来:技术以超乎我们想象的方式改善我们的生活。对于这样的人类-机器人交互系统,关键是让四足机器人有能力响应自然语言指令。近来大型语言模型(LLM)发展迅速,已经展现出了执行高层规划的潜力。然而,对LLM来说,理解低层指令依然很难,比如关节角度目标或电机扭矩,尤其是对于本身就不稳定、必需高频控制信号的足式机器人。因此,大多数现有工作都会假设已为LLM提供了决定机器人行为的高层API,而这就从根本上限制了系统的表现能

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

Atom editor mac version download

Atom editor mac version download

The most popular open source editor