search
HomeTechnology peripheralsAIXJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement

XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement
The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

##The first author of this paper, Zhu Qinfeng, is from Xi'an Jiaotong-Liverpool University A first-year PhD student jointly trained with the University of Liverpool, whose supervisor is Associate Professor Fan Lei. His main research directions are semantic segmentation, multi-modal information fusion, 3D vision, hyperspectral images and data enhancement. This research group is recruiting 24/25-level doctoral students. Email inquiries are welcome.
Email: qinfeng.zhu21@student.xjtlu.edu.cn
Homepage: https://zhuqinfeng1999.github.io/

This article is a review of the latest review paper published in Pattern Recognition 2024, the top journal in the field of pattern recognition: "Advancements in Point Cloud Data Augmentation for Deep Learning: A Survey" Interpretation.

This paper was completed by Zhu Qinfeng, Fan Lei and Weng Ningxin of Xi'an Jiaotong-Liverpool University.

This review comprehensively summarizes the related research work of
point cloud data enhancement for the first time.

# Deep learning has become one of the mainstream and effective methods for point cloud analysis tasks such as detection, segmentation and classification. To reduce overfitting during training deep learning models, and especially to improve model performance when the amount or diversity of training data is limited, data augmentation is often key. Although various point cloud data augmentation methods have been widely used in different point cloud processing tasks, no systematic review or discussion of these methods has been published yet.

Therefore, this paper investigates these methods and categorizes them into
a classification framework that contains basic and specific point cloud data enhancement methods. Through a comprehensive evaluation of these enhancement methods, this paper identifies their potential and limitations, providing a useful reference for selecting appropriate enhancement methods.

In addition, this article explores
potential directions for future research. This survey helps provide a comprehensive overview of current research on point cloud data augmentation and promote its wider application and development.
XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement
Free Access: https://authors.elsevier.com/c/1j3TW77nKoLGM
arXiv: https://arxiv.org/pdf/2308.12113
Author home .
XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement
Point cloud data enhancement

In the field of deep learning , data augmentation is often used when the available training data set is limited. This involves performing a specific series of operations to modify or extend the original data, thereby increasing the size and diversity of the data set.
Since high-quality augmented data sets help improve the robustness of the network, enhance generalization capabilities, and reduce overfitting, when training a deep learning network, the data Augmentation is almost always considered the ideal option. A comprehensive development has been observed in the field of image data enhancement and text data enhancement.
In numerous recently published research papers on point cloud processing tasks, researchers have explored various methods of enhancing point cloud data. The wide range of these methods creates challenges for researchers in selecting appropriate methods. Therefore, it is of great value to systematically investigate these methods and classify them into different groups.
This paper presents a comprehensive survey on point cloud data augmentation methods.
Based on our survey, we propose a classification system for these enhancement methods, as shown in Figure 1.
Enhancement methods can be divided into two main categories: basic point cloud enhancement and specific point cloud enhancement, which is similar to the typical classification methods of image enhancement.

Basic point cloud enhancement refers to those methods that are simple in concept and universal in different tasks and application environments. This is achieved through them Extensive use in combination with other methods is demonstrated in the survey literature.

Specific point cloud enhancement refers to methods usually developed to solve specific challenges or respond to specific application environments. In most cases, specific point cloud enhancements are computationally more complex than base enhancements, depending on the implementation details of the enhancement method. The subcategories in our proposed classification system represent a summary of various methods that have been used for point cloud data enhancement in the literature, or have the potential to be used for point cloud data enhancement.

The main contributions of this review are as follows:

  • This is the first comprehensive survey A review of point cloud data enhancement methods, covering the latest progress in point cloud data enhancement. Based on the characteristics of the enhancement operation, we propose a classification system of point cloud data enhancement methods.
  • This study summarizes various point cloud data enhancement methods, discusses their applications in typical point cloud processing tasks such as detection, segmentation, and classification, and provides guidance for future Suggestions are provided for potential research.

Basic point cloud enhancement

affine transformation involves Transformation to affine space that preserves collinearity and distance scaling. In image data enhancement, commonly used affine transformation methods include scaling, translation, rotation, flipping and shearing. Likewise, affine transformations can also be applied to point cloud data augmentation. Typical methods include translation, rotation, flipping, and scaling, and these methods have been widely used to generate additional new training data.

These operations can be applied to the entire point cloud dataset, or to selected instances in the point cloud data using specific strategies (instances refer to items such as Figure 2( a) a semantic object such as the vehicle shown), or applied to a specific part of the selected instance.

#However, data enhanced by affine transformation may face problems of information loss or unreasonable semantics. The specific operations and discussion of these affine transformations are detailed in the paper.
XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement
##                                                                                                                                                                                                                                   to c) rotate the vehicle, (d) scale the vehicle, (e) flip the scene.

Discard enhancement refers to discarding some data points in the point cloud data, as shown in Figure 3. The selection of removal points is determined by the specific strategy. The discarded points can be part of the entire point cloud data or randomly selected points in the scene. Dropout augmentation helps deep learning models become more robust to missing or incomplete data representing occluded or partially visible scenes.

# It also prevents deep learning models from becoming too dependent on specific data points in the training dataset. However, losing excessive or critical point cloud information may lead to unrealistic representations of real-world objects in the training data and affect the training of deep learning models. Various methods and discussions based on dropout enhancement are detailed in the paper.

XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement

## 图 3. Through the enhancement point enhancement example: (a) the original point cloud data, (b) randomly discard the enhancement point cloud, (c) Discarded portion of the enhanced point cloud.

Jitter refers to applying small perturbations or noise to the position of a single point in the point cloud, as shown in Figure 4. Various methods and discussions based on jitter enhancement are detailed in the paper.

XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement

                                 图4.抖动增强示例:(a)原始点云数据,(b)抖动增强的点云数据。

在场景级的点云数据集中,例如户外自动驾驶场景,标注的实例通常是有限的。在这种情况下,GT-sampling成为一种简单而有效的数据增强方法。

GT-sampling是指将带有标签的实例添加到训练数据集中的操作,如图5所示,标记的GT实例来自同一训练数据集或其他数据集。GT-sampling通常适用于场景级点云数据集,而通常不考虑实例级点云数据集,如ShapeNet。基于GT-sampling增强的各种方法和讨论详见论文。
XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement
                          图5.(a)语义合理的GT-sampling,添加的车辆在红框中。(b) 语义不合理的GT-sampling,一辆车在建筑物墙体内,另一辆在树木中。

除此以外,本文还介绍了应用于基础点云数据增强方法的策略,如Patch-based策略,和自动优化策略(见图6)。本文对典型的基础点云增强方法进行了汇总,如表1所示。

XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement

                                 图6.自动优化的常见过程。

XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement

                                  表1.代表性基础点云增强方法。

特定点云增强

特定点云增强方法通常旨在解决特定的挑战或应用场景。特定点云增强包括:Mixup增强,域增强,对抗性变形增强,上采样增强,补全增强,生成增强,多模态增强和其他。

这些特定增强方法的具体定义以及讨论详见文中。表2概述了具有代表性的特定增强方法的发展,提供了各种信息。

XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement

                                 表2.代表性特定点云增强方法。

需要注意的是,目前一些对抗性变形、上采样、补全和生成技术并没有直接应用到点云数据增强中,如表3所示。为了对特定方法进行全面的分类,本文还包括了这些潜在的方法并对其进行了讨论。

XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement

                                   表3.潜在的特定点云增强方法。

讨论

论文中对点云数据增强方法的适用任务以及场景进行了详细的讨论,并指出了点云数据增强在一致性学习中的作用,如图7所示。

XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement

图7.(a)常规的深度学习训练,将原始数据和增强数据发送到深度学习网络进行训练,得到训练后的模型;(b)一致性学习,通过各种增强方法对输入点云数据进行变换,生成多个增强变量,然后将其馈送到多个网络进行一致性学习,在训练期间做出一致的预测。

表4对进行数据增强前后进行定量评估的文献进行了整理,展示了数据增强的效果。作为比较各种增强方法的另一部分,附录中(详见论文)还概述了使用增强点云数据的下游任务的定量性能,以及这些任务中采用的增强方法。

XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement

                                   表4.点云数据增强对于增强模型表现的汇报结果。

未来工作

研究团队针对该领域,指出了进一步研究的九点可能的方向:

  • 研究人员没有充分研究进行点云数据增强的对抗性变形、上采样、补全和生成。鉴于GAN和扩散模型的进步,这些模型可用于生成现实和多样化的点云实例。未来的研究应该在特定点云处理任务的基准数据集上评估这些方法,以评估它们作为增强技术的有效性。

  • 目前,很少有研究针对不同的点云处理任务,使用一致的基线网络和数据集来评估点云数据增强方法的性能。这样的评估将增强我们对不同增强方法性能的理解。因此,未来的研究工作可能侧重于建立新的方法、指标和/或数据集,以评估点云数据增强方法的有效性及其对深度学习模型性能的影响。

  • 当应用于大规模点云数据集时,某些特定增强方法可能会导致计算成本高昂。未来的工作可以集中在开发有效的算法,在计算成本和增强效率之间进行权衡。此外,一些特定点云增强方法相对复杂,难以复现。建议开发即插即用方法,促进其广泛采用。

  • 对于点云数据增强,缺乏普遍接受的基本增强操作组合。因此,未来的工作需要建立一个标准协议,在不牺牲增强效率的情况下,为不同的应用领域、任务和/或数据集选择增强操作。

  • 通过增强生成的多个点云变体会影响一致性学习的有效性。目前,据我们所知,一致性学习中只使用了基本的增强方法。探索特定点云增强方法,如对抗变形和生成增强,为提高一致性学习的有效性提供了一种有趣的方法,被认为是一个有价值的未来研究方向。

  • 目前,将基础点云增强方法与特定点云增强方法相结合的研究有限。这样的组合有可能进一步增加数据增强的多功能性,值得未来的研究。

  • 增强需要真实地模拟点云数据的变化,如物体大小、位置、方向、外观和环境的变化,以确保模拟数据与现实世界的情况保持一致,并保持语义正确。未来的研究可以着眼于标准化各种增强范围,以适应特定的应用场景。

  • 某些应用,如目标检测,可能涉及场景中的动态物体。在动态环境中捕获的点云可能需要考虑物体时间变化的特定增强策略。例如,可以设计运动物体的特定轨迹,这可以通过一组组合增强操作来实现,例如平移,旋转和丢弃。

  • ViT在简单组合基本操作的情况下,在分割和分类任务上也取得了较强的性能。当与最先进的ViT作为骨干网络集成时,探索增强方法的性能将是有意义的。

参考文献:

[1] Qinfeng Zhu , Lei Fan , Ningxin Weng , Advancements in Point
Cloud Data Augmentation for Deep Learning: A Survey, Pattern Recognition (2024), doi:
https://doi.org/10.1016/j.patcog.2024.110532

The above is the detailed content of XJTLU and the University of Liverpool propose: the first comprehensive review of point cloud data enhancement. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议Dec 21, 2023 pm 03:25 PM

PowerInfer提高了在消费级硬件上运行AI的效率上海交大团队最新推出了超强CPU/GPULLM高速推理引擎PowerInfer。PowerInfer和llama.cpp都在相同的硬件上运行,并充分利用了RTX4090上的VRAM。这个推理引擎速度有多快?在单个NVIDIARTX4090GPU上运行LLM,PowerInfer的平均token生成速率为13.20tokens/s,峰值为29.08tokens/s,仅比顶级服务器A100GPU低18%,可适用于各种LLM。PowerInfer与

思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了Sep 05, 2023 pm 05:53 PM

要让大型语言模型(LLM)充分发挥其能力,有效的prompt设计方案是必不可少的,为此甚至出现了promptengineering(提示工程)这一新兴领域。在各种prompt设计方案中,思维链(CoT)凭借其强大的推理能力吸引了许多研究者和用户的眼球,基于其改进的CoT-SC以及更进一步的思维树(ToT)也收获了大量关注。近日,苏黎世联邦理工学院、Cledar和华沙理工大学的一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为LLM构建推理过程的能力不断得到提升,研究者也通

复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来Sep 23, 2023 am 09:01 AM

近期,复旦大学自然语言处理团队(FudanNLP)推出LLM-basedAgents综述论文,全文长达86页,共有600余篇参考文献!作者们从AIAgent的历史出发,全面梳理了基于大型语言模型的智能代理现状,包括:LLM-basedAgent的背景、构成、应用场景、以及备受关注的代理社会。同时,作者们探讨了Agent相关的前瞻开放问题,对于相关领域的未来发展趋势具有重要价值。论文链接:https://arxiv.org/pdf/2309.07864.pdfLLM-basedAgent论文列表:

吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了Mar 01, 2024 pm 10:55 PM

大型语言模型(LLM)被广泛应用于需要多个链式生成调用、高级提示技术、控制流以及与外部环境交互的复杂任务。尽管如此,目前用于编程和执行这些应用程序的高效系统却存在明显的不足之处。研究人员最近提出了一种新的结构化生成语言(StructuredGenerationLanguage),称为SGLang,旨在改进与LLM的交互性。通过整合后端运行时系统和前端语言的设计,SGLang使得LLM的性能更高、更易控制。这项研究也获得了机器学习领域的知名学者、CMU助理教授陈天奇的转发。总的来说,SGLang的

大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」Feb 02, 2024 pm 09:33 PM

将不同的基模型象征为不同品种的狗,其中相同的「狗形指纹」表明它们源自同一个基模型。大模型的预训练需要耗费大量的计算资源和数据,因此预训练模型的参数成为各大机构重点保护的核心竞争力和资产。然而,与传统软件知识产权保护不同,对预训练模型参数盗用的判断存在以下两个新问题:1)预训练模型的参数,尤其是千亿级别模型的参数,通常不会开源。预训练模型的输出和参数会受到后续处理步骤(如SFT、RLHF、continuepretraining等)的影响,这使得判断一个模型是否基于另一个现有模型微调得来变得困难。无

FATE 2.0发布:实现异构联邦学习系统互联FATE 2.0发布:实现异构联邦学习系统互联Jan 16, 2024 am 11:48 AM

FATE2.0全面升级,推动隐私计算联邦学习规模化应用FATE开源平台宣布发布FATE2.0版本,作为全球领先的联邦学习工业级开源框架。此次更新实现了联邦异构系统之间的互联互通,持续增强了隐私计算平台的互联互通能力。这一进展进一步推动了联邦学习与隐私计算规模化应用的发展。FATE2.0以全面互通为设计理念,采用开源方式对应用层、调度、通信、异构计算(算法)四个层面进行改造,实现了系统与系统、系统与算法、算法与算法之间异构互通的能力。FATE2.0的设计兼容了北京金融科技产业联盟的《金融业隐私计算

220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升Oct 23, 2023 pm 03:13 PM

IBM再度发力。随着AI系统的飞速发展,其能源需求也在不断增加。训练新系统需要大量的数据集和处理器时间,因此能耗极高。在某些情况下,执行一些训练好的系统,智能手机就能轻松胜任。但是,执行的次数太多,能耗也会增加。幸运的是,有很多方法可以降低后者的能耗。IBM和英特尔已经试验过模仿实际神经元行为设计的处理器。IBM还测试了在相变存储器中执行神经网络计算,以避免重复访问RAM。现在,IBM又推出了另一种方法。该公司的新型NorthPole处理器综合了上述方法的一些理念,并将其与一种非常精简的计算运行

「花果山名场面」有了高清画质版,NTU提出视频超分框架Upscale-A-Video「花果山名场面」有了高清画质版,NTU提出视频超分框架Upscale-A-VideoJan 11, 2024 pm 07:57 PM

扩散模型在图像生成方面取得了显著成功,但将其应用于视频超分辨率仍存在挑战。视频超分辨率要求输出保真度和时间一致性,而扩散模型的固有随机性使这变得复杂。因此,有效地将扩散模型应用于视频超分辨率仍是一个具有挑战性的任务。来自南洋理工大学S-Lab的研究团队提出了一种名为Upscale-A-Video的文本指导潜在扩散框架,用于视频超分。该框架通过两个关键机制确保时间一致性。首先,在局部范围内,它将时间层集成到U-Net和VAE-Decoder中,以保持短序列的一致性。其次,在全局范围内,该框架引入了

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools