search
HomeTechnology peripheralsAIHuman preference is the ruler! SPPO alignment technology allows large language models to compete with each other and compete with themselves

Human preference is the ruler! SPPO alignment technology allows large language models to compete with each other and compete with themselves
The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

##Richard Sutton made this evaluation in "The Bitter Lesson": "The most important lesson that can be drawn from 70 years of artificial intelligence research is that those general methods that exploit computing are ultimately the most effective, and the advantages are huge."

Self play is such a method that uses search and learning at the same time to fully utilize and expand the scale of computing.

At the beginning of this year, Professor Gu Quanquan’s team at the University of California, Los Angeles (UCLA) proposed a
Self-Play Fine-Tuning, SPIN ), without using additional fine-tuning data, the ability of LLM can be greatly improved by relying on self-game alone.

Recently, Professor Gu Quanquan’s team and Professor Yiming Yang’s team at Carnegie Mellon University (CMU) collaborated to develop a method called “
Self-Game Preference Optimization (Self-Play Preference Optimization, SPPO) " alignment technology, this new method aims to optimize the behavior of large language models through a self-game framework to better match human preferences. Fight each other from left to right and show off your magical powers again!

Human preference is the ruler! SPPO alignment technology allows large language models to compete with each other and compete with themselves

    ##Paper title: Self-Play Preference Optimization for Language Model Alignment
  • Paper link: https://arxiv.org/pdf/2405.00675.pdf

##Technical background and challenges
Large language models (LLMs) are becoming an important driving force in the field of artificial intelligence, performing well in various tasks with their excellent text generation and understanding capabilities. Although the capabilities of LLM are impressive, making the output behavior of these models more consistent with the needs of practical applications often requires fine-tuning through an alignment process.
#The key to this process is to adjust the model to better reflect human preferences and behavioral norms. Common methods include reinforcement learning based on human feedback (RLHF) or direct preference optimization (Direct Preference Optimization, DPO).
Reinforcement learning based on human feedback (RLHF) relies on explicitly maintaining a reward model to adjust and refine large language models. In other words, for example, InstructGPT first trains a reward function that obeys the Bradley-Terry model based on human preference data, and then uses reinforcement learning algorithms like Proximal Policy Optimization (PPO) to optimize large language models. Last year, researchers proposed Direct Preference Optimization (DPO).
Unlike RLHF, which maintains an explicit reward model, the DPO algorithm implicitly obeys the Bradley-Terry model, but can be directly used for large language model optimization. Existing work has attempted to further fine-tune large models by using DPO over multiple iterations (Figure 1).

Human preference is the ruler! SPPO alignment technology allows large language models to compete with each other and compete with themselves##                                                                                                                                                                                             Figure 1. The iterative optimization method based on the Bradley-Terry model lacks theoretical understanding and guarantee

Parametric models such as Bradley-Terry provide a numerical score for each choice. While these models provide reasonable approximations of human preferences, they fail to fully capture the complexity of human behavior.

These models often assume that the preference relationship between different options is monotonic and transitive, while empirical evidence often shows the inconsistency and nonlinearity of human decision-making, such as Tversky's research observed that human decision-making can be influenced by multiple factors and exhibit inconsistencies.

Theoretical basis and method of SPPO
2. The two language models of imagination are often played.

In these contexts, the author proposes a new self-game framework SPPO, which not only has the ability to solve the problem of two players It is provably guaranteed for two-player constant-sum games and can be extended to efficiently fine-tune large language models on a large scale.

Specifically, the article strictly defines the RLHF problem as a two-player normal-sum game (Figure 2). The goal of this work is to identify Nash equilibrium strategies that, on average, always provide a more preferred response than any other strategy.

In order to approximately identify the Nash equilibrium strategy, the author adopts the classic online adaptive algorithm with multiplicative weights as a high-level framework algorithm to solve the two-player game.

Within each step of this framework, the algorithm can approximate multiplicative weight updates through a self-game mechanism, where in each round, the large language model is working on the previous The wheel itself is fine-tuned, optimized through synthetic data generated by the model and annotations of preferred models.

Specifically, the large language model will generate several responses for each prompt in each round; based on the annotations of the preference model, the algorithm can estimate the winning rate of each response ;The algorithm can further fine-tune the parameters of the large language model so that responses with a high winning rate have a higher probability of appearing (Figure 3).

Human preference is the ruler! SPPO alignment technology allows large language models to compete with each other and compete with themselves

#                                             Figure 3. The goal of the self-game algorithm is to fine-tune itself to outperform the previous round of language model

Experimental design and results

In the experiment, the research team used A Mistral-7B is used as the baseline model and 60,000 prompts from the UltraFeedback dataset are used for unsupervised training. They found that through self-playing, the model was able to significantly improve its performance on multiple evaluation platforms, such as AlpacaEval 2.0 and MT-Bench. These platforms are widely used to evaluate the quality and relevance of model-generated text.

Through the SPPO method, the model is not only improved in
the fluency and accuracy of generated text, but more importantly is: "It performs better in conforming to human values ​​and preferences."

Human preference is the ruler! SPPO alignment technology allows large language models to compete with each other and compete with themselves

## 图 4. The effect of the Sppo model on Alpacaeval 2.0 is significantly improved, which is higher than other benchmark methods such as Iterative DPO.

In the test of AlpacaEval 2.0 (Figure 4), the length control winning rate of the SPPO-optimized model increased from 17.11% of the baseline model to 28.53%, showing a significant improvement in its understanding of human preferences. The model optimized by three rounds of SPPO is significantly better than the multi-round iteration of DPO, IPO and self-rewarding language model (Self-Rewarding LM) on AlpacaEval2.0.

In addition, the model’s performance on MT-Bench also exceeded that of traditional models tuned through human feedback. This demonstrates the effectiveness of SPPO in automatically adapting model behavior to complex tasks.

Conclusion and future prospects

Self-playing preference optimization (SPPO) is the big language The model provides a new optimization path, which not only improves the quality of model generation, but more importantly, improves the alignment of the model with human preferences.

With the continuous development and optimization of technology, it is expected that SPPO and its derivative technologies will play a greater role in the sustainable development and social application of artificial intelligence, building a Paving the way for more intelligent and responsible AI systems.

The above is the detailed content of Human preference is the ruler! SPPO alignment technology allows large language models to compete with each other and compete with themselves. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议Dec 21, 2023 pm 03:25 PM

PowerInfer提高了在消费级硬件上运行AI的效率上海交大团队最新推出了超强CPU/GPULLM高速推理引擎PowerInfer。PowerInfer和llama.cpp都在相同的硬件上运行,并充分利用了RTX4090上的VRAM。这个推理引擎速度有多快?在单个NVIDIARTX4090GPU上运行LLM,PowerInfer的平均token生成速率为13.20tokens/s,峰值为29.08tokens/s,仅比顶级服务器A100GPU低18%,可适用于各种LLM。PowerInfer与

思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了Sep 05, 2023 pm 05:53 PM

要让大型语言模型(LLM)充分发挥其能力,有效的prompt设计方案是必不可少的,为此甚至出现了promptengineering(提示工程)这一新兴领域。在各种prompt设计方案中,思维链(CoT)凭借其强大的推理能力吸引了许多研究者和用户的眼球,基于其改进的CoT-SC以及更进一步的思维树(ToT)也收获了大量关注。近日,苏黎世联邦理工学院、Cledar和华沙理工大学的一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为LLM构建推理过程的能力不断得到提升,研究者也通

复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来Sep 23, 2023 am 09:01 AM

近期,复旦大学自然语言处理团队(FudanNLP)推出LLM-basedAgents综述论文,全文长达86页,共有600余篇参考文献!作者们从AIAgent的历史出发,全面梳理了基于大型语言模型的智能代理现状,包括:LLM-basedAgent的背景、构成、应用场景、以及备受关注的代理社会。同时,作者们探讨了Agent相关的前瞻开放问题,对于相关领域的未来发展趋势具有重要价值。论文链接:https://arxiv.org/pdf/2309.07864.pdfLLM-basedAgent论文列表:

FATE 2.0发布:实现异构联邦学习系统互联FATE 2.0发布:实现异构联邦学习系统互联Jan 16, 2024 am 11:48 AM

FATE2.0全面升级,推动隐私计算联邦学习规模化应用FATE开源平台宣布发布FATE2.0版本,作为全球领先的联邦学习工业级开源框架。此次更新实现了联邦异构系统之间的互联互通,持续增强了隐私计算平台的互联互通能力。这一进展进一步推动了联邦学习与隐私计算规模化应用的发展。FATE2.0以全面互通为设计理念,采用开源方式对应用层、调度、通信、异构计算(算法)四个层面进行改造,实现了系统与系统、系统与算法、算法与算法之间异构互通的能力。FATE2.0的设计兼容了北京金融科技产业联盟的《金融业隐私计算

吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了Mar 01, 2024 pm 10:55 PM

大型语言模型(LLM)被广泛应用于需要多个链式生成调用、高级提示技术、控制流以及与外部环境交互的复杂任务。尽管如此,目前用于编程和执行这些应用程序的高效系统却存在明显的不足之处。研究人员最近提出了一种新的结构化生成语言(StructuredGenerationLanguage),称为SGLang,旨在改进与LLM的交互性。通过整合后端运行时系统和前端语言的设计,SGLang使得LLM的性能更高、更易控制。这项研究也获得了机器学习领域的知名学者、CMU助理教授陈天奇的转发。总的来说,SGLang的

大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」Feb 02, 2024 pm 09:33 PM

将不同的基模型象征为不同品种的狗,其中相同的「狗形指纹」表明它们源自同一个基模型。大模型的预训练需要耗费大量的计算资源和数据,因此预训练模型的参数成为各大机构重点保护的核心竞争力和资产。然而,与传统软件知识产权保护不同,对预训练模型参数盗用的判断存在以下两个新问题:1)预训练模型的参数,尤其是千亿级别模型的参数,通常不会开源。预训练模型的输出和参数会受到后续处理步骤(如SFT、RLHF、continuepretraining等)的影响,这使得判断一个模型是否基于另一个现有模型微调得来变得困难。无

220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升Oct 23, 2023 pm 03:13 PM

IBM再度发力。随着AI系统的飞速发展,其能源需求也在不断增加。训练新系统需要大量的数据集和处理器时间,因此能耗极高。在某些情况下,执行一些训练好的系统,智能手机就能轻松胜任。但是,执行的次数太多,能耗也会增加。幸运的是,有很多方法可以降低后者的能耗。IBM和英特尔已经试验过模仿实际神经元行为设计的处理器。IBM还测试了在相变存储器中执行神经网络计算,以避免重复访问RAM。现在,IBM又推出了另一种方法。该公司的新型NorthPole处理器综合了上述方法的一些理念,并将其与一种非常精简的计算运行

何恺明和谢赛宁团队成功跟随解构扩散模型探索,最终创造出备受赞誉的去噪自编码器何恺明和谢赛宁团队成功跟随解构扩散模型探索,最终创造出备受赞誉的去噪自编码器Jan 29, 2024 pm 02:15 PM

去噪扩散模型(DDM)是目前广泛应用于图像生成的一种方法。最近,XinleiChen、ZhuangLiu、谢赛宁和何恺明四人团队对DDM进行了解构研究。通过逐步剥离其组件,他们发现DDM的生成能力逐渐下降,但表征学习能力仍然保持一定水平。这说明DDM中的某些组件对于表征学习的作用可能并不重要。针对当前计算机视觉等领域的生成模型,去噪被认为是一种核心方法。这类方法通常被称为去噪扩散模型(DDM),通过学习一个去噪自动编码器(DAE),能够通过扩散过程有效地消除多个层级的噪声。这些方法实现了出色的图

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools