search
HomeTechnology peripheralsAIImproved detection algorithm: for target detection in high-resolution optical remote sensing images

01 Outlook Summary

Currently, it is difficult to achieve an appropriate balance between detection efficiency and detection results. We have developed an enhanced YOLOv5 algorithm for target detection in high-resolution optical remote sensing images, using multi-layer feature pyramids, multi-detection head strategies and hybrid attention modules to improve the effect of the target detection network in optical remote sensing images. According to the SIMD data set, the mAP of the new algorithm is 2.2% better than YOLOv5 and 8.48% better than YOLOX, achieving a better balance between detection results and speed.

02 Background & Motivation

With the rapid development of remote sensing technology, high-resolution optical remote sensing images have been used to describe the earth Many objects on the surface, including airplanes, cars, buildings, etc. Object detection plays a vital role in the interpretation of remote sensing images and can be used for segmentation, description and target tracking of remote sensing images. However, due to their relatively large field of view and high altitude necessities, aerial optical remote sensing images exhibit diversity in scale, viewpoint specificity, random orientation, and high background complexity, whereas most traditional datasets contain terrestrial views . As a result, the techniques used to construct artificial feature detection have traditionally had a record of large differences in accuracy and speed. Due to the needs of society and the support of the development of deep learning, the use of neural networks for target detection in optical remote sensing images is necessary.

Currently, target detection algorithms that combine deep learning to analyze optical remote sensing photos can be divided into three types: supervised, unsupervised and weakly supervised. However, due to the complexity and uncertainty of unsupervised and weakly supervised algorithms, supervised algorithms are the most commonly used algorithms. Furthermore, supervised object detection algorithms can be divided into single-stage or two-stage. Based on the assumption that aircraft are usually located at airports and ships are usually located at ports and oceans, detecting airports and ports in downsampled star images, and then mapping the discovered objects back to the original ultra-high-resolution satellite images, can detect objects of different sizes simultaneously. Some researchers have proposed a rotating target detection method based on RCNN, which improves the accuracy of target detection in remote sensing images by solving the randomization problem of target directions.

03 New Algorithm Research

Most of the current YOLO series detection heads are based on the output characteristics of FPN and PAFPN, among which the ones based on FPN Networks, such as YOLOv3, and its variants are shown in Figure a below. They directly utilize the one-way fusion feature for output. YOLOv4 and YOLOv5 based on the PAFPN algorithm add a low-level to high-level channel on this basis, which directly transmits low-level signals upward (b below).

Improved detection algorithm: for target detection in high-resolution optical remote sensing images

As shown in the figure above, in some studies, a detection head was added to the specific detection task in the TPH-YOLOv5 model. In Figures b and c above, only the PAFPN function can be used for output, while the FPN function is not fully utilized. Therefore, YOLOv7 connects three auxiliary heads to the FPN output, as shown in Figure d above, although the auxiliary heads are only used for "coarse selection" and have a lower weight assessment. The SSD detection head is proposed to improve the YOLO network's too rough design of the anchor set, and proposes a dense anchor design based on multi-scale. As shown in Figure f, this strategy can simultaneously utilize the feature information of PANet and FPN. In addition, there is a 64x downsampling process that directly adds the output, which makes the network contain previous global information.

The multi-detection head method can effectively utilize the output features of the network. Improved YOLO is an object detection network for high-resolution remote sensing photos. As shown in the figure below:

Improved detection algorithm: for target detection in high-resolution optical remote sensing images

The basic structure of the backbone network is a CSP dense network with C3 and convolution modules as the core. After data augmentation, images are fed into the network and after channel mixing by Conv module with kernel size 6, many convolutional modules perform feature retrieval. After a feature enhancement module called SPPF, they are connected to Neck’s PANet. In order to improve the detection ability of the network, two-way feature fusion is performed. Conv2d is used to independently expand the fused feature layers to generate multi-layer outputs. As shown in the figure below, the NMS algorithm combines the outputs of all single-layer detectors to generate the final detection frame.

Improved detection algorithm: for target detection in high-resolution optical remote sensing images

Figure b below describes the structural composition of each module of the improved YOLO network.

Improved detection algorithm: for target detection in high-resolution optical remote sensing images

Conv includes a 2D convolution layer, BN layer batch normalization and Silu activation function, C3 includes two 2D convolution layers and a bottleneck layer, and Upsample is an upsampling layer. The SPPF module is an accelerated version of the SPP module, the MAB module is as mentioned above, and the ECA is as shown in the lower left corner. After channel-level global average pooling without dimensionality reduction, fast 1D convolutions of size k are used to capture local cross-channel interaction information, taking into account the relationship of each channel with its k neighbors, thereby efficiently performing ECA. The above two transformations collect features along two spatial directions to produce a pair of direction-aware feature maps, which are then concatenated and modified using convolution and sigmoid functions to provide attention output.

04 Experiment and Visualization

The SIMD dataset is a multi-category, open source, high-resolution remote sensing object detection dataset, containing a total of 15 categories, as shown in Figure 4. In addition, the SIMD dataset is more distributed in small and medium-sized targets (w

Improved detection algorithm: for target detection in high-resolution optical remote sensing images

Improved detection algorithm: for target detection in high-resolution optical remote sensing images

The output of the SPPF module can be connected to the output header to identify large targets in the image. However, the output of the SPPF module has multiple connections and involves targets at multiple scales, so using it directly for the detection head to identify large objects will result in poor model representation, as shown in the figure above, showing before and after adding the MAB module Visual comparison of heatmaps of some detection results. After adding the MAB module, the detection head focuses on detecting large targets, and allocates the prediction of small targets to other prediction heads, which improves the expression effect of the model and is more in line with the requirements of dividing detection heads based on target size in the YOLO algorithm.

Improved detection algorithm: for target detection in high-resolution optical remote sensing images

Some test results are shown in the picture above. Judging from each detection result, there is not much difference from other algorithms. However, compared with other algorithms, the algorithm we studied improves the detection effect of the model while ensuring that the time consumption does not increase significantly, and uses the attention mechanism to enhance The expression effect of the model.

Improved detection algorithm: for target detection in high-resolution optical remote sensing images

The above is the detailed content of Improved detection algorithm: for target detection in high-resolution optical remote sensing images. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
From Friction To Flow: How AI Is Reshaping Legal WorkFrom Friction To Flow: How AI Is Reshaping Legal WorkMay 09, 2025 am 11:29 AM

The legal tech revolution is gaining momentum, pushing legal professionals to actively embrace AI solutions. Passive resistance is no longer a viable option for those aiming to stay competitive. Why is Technology Adoption Crucial? Legal professional

This Is What AI Thinks Of You And Knows About YouThis Is What AI Thinks Of You And Knows About YouMay 09, 2025 am 11:24 AM

Many assume interactions with AI are anonymous, a stark contrast to human communication. However, AI actively profiles users during every chat. Every prompt, every word, is analyzed and categorized. Let's explore this critical aspect of the AI revo

7 Steps To Building A Thriving, AI-Ready Corporate Culture7 Steps To Building A Thriving, AI-Ready Corporate CultureMay 09, 2025 am 11:23 AM

A successful artificial intelligence strategy cannot be separated from strong corporate culture support. As Peter Drucker said, business operations depend on people, and so does the success of artificial intelligence. For organizations that actively embrace artificial intelligence, building a corporate culture that adapts to AI is crucial, and it even determines the success or failure of AI strategies. West Monroe recently released a practical guide to building a thriving AI-friendly corporate culture, and here are some key points: 1. Clarify the success model of AI: First of all, we must have a clear vision of how AI can empower business. An ideal AI operation culture can achieve a natural integration of work processes between humans and AI systems. AI is good at certain tasks, while humans are good at creativity and judgment

Netflix New Scroll, Meta AI's Game Changers, Neuralink Valued At $8.5 BillionNetflix New Scroll, Meta AI's Game Changers, Neuralink Valued At $8.5 BillionMay 09, 2025 am 11:22 AM

Meta upgrades AI assistant application, and the era of wearable AI is coming! The app, designed to compete with ChatGPT, offers standard AI features such as text, voice interaction, image generation and web search, but has now added geolocation capabilities for the first time. This means that Meta AI knows where you are and what you are viewing when answering your question. It uses your interests, location, profile and activity information to provide the latest situational information that was not possible before. The app also supports real-time translation, which completely changed the AI ​​experience on Ray-Ban glasses and greatly improved its usefulness. The imposition of tariffs on foreign films is a naked exercise of power over the media and culture. If implemented, this will accelerate toward AI and virtual production

Take These Steps Today To Protect Yourself Against AI CybercrimeTake These Steps Today To Protect Yourself Against AI CybercrimeMay 09, 2025 am 11:19 AM

Artificial intelligence is revolutionizing the field of cybercrime, which forces us to learn new defensive skills. Cyber ​​criminals are increasingly using powerful artificial intelligence technologies such as deep forgery and intelligent cyberattacks to fraud and destruction at an unprecedented scale. It is reported that 87% of global businesses have been targeted for AI cybercrime over the past year. So, how can we avoid becoming victims of this wave of smart crimes? Let’s explore how to identify risks and take protective measures at the individual and organizational level. How cybercriminals use artificial intelligence As technology advances, criminals are constantly looking for new ways to attack individuals, businesses and governments. The widespread use of artificial intelligence may be the latest aspect, but its potential harm is unprecedented. In particular, artificial intelligence

A Symbiotic Dance: Navigating Loops Of Artificial And Natural PerceptionA Symbiotic Dance: Navigating Loops Of Artificial And Natural PerceptionMay 09, 2025 am 11:13 AM

The intricate relationship between artificial intelligence (AI) and human intelligence (NI) is best understood as a feedback loop. Humans create AI, training it on data generated by human activity to enhance or replicate human capabilities. This AI

AI's Biggest Secret — Creators Don't Understand It, Experts SplitAI's Biggest Secret — Creators Don't Understand It, Experts SplitMay 09, 2025 am 11:09 AM

Anthropic's recent statement, highlighting the lack of understanding surrounding cutting-edge AI models, has sparked a heated debate among experts. Is this opacity a genuine technological crisis, or simply a temporary hurdle on the path to more soph

Bulbul-V2 by Sarvam AI: India's Best TTS ModelBulbul-V2 by Sarvam AI: India's Best TTS ModelMay 09, 2025 am 10:52 AM

India is a diverse country with a rich tapestry of languages, making seamless communication across regions a persistent challenge. However, Sarvam’s Bulbul-V2 is helping to bridge this gap with its advanced text-to-speech (TTS) t

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment