search
HomeBackend DevelopmentGolangPerformance optimization techniques in Go concurrent programming

Performance optimization techniques in Go concurrent programming

Jun 05, 2024 pm 12:09 PM
go languageConcurrent programming

Performance optimization tips for Go concurrent programming include: using a Goroutine pool to avoid the overhead of creating and destroying goroutines. Use channels to pass data instead of shared memory to prevent data races. Avoid using heavy locks and consider using lock-free data structures to reduce contention. Execute tasks in parallel and take advantage of Go's concurrency features.

Performance optimization techniques in Go concurrent programming

Performance Optimization Tips in Go Concurrent Programming

In Go, concurrent programming is widely used to improve application performance. However, when implementing concurrency, you need to pay attention to some key performance optimization tips to avoid unnecessary performance overhead.

1. Using Goroutine Pool

There may be overhead when creating a new goroutine. By using a goroutine pool, you avoid the cost of repeatedly creating and destroying goroutines.

package main

import "sync"

var wg sync.WaitGroup
var pool = sync.Pool{
    New: func() interface{} {
        return new(func() {})
    },
}

func main() {
    for i := 0; i < 10000; i++ {
        fn := pool.Get().(func())
        go fn()
        wg.Add(1)
        go func() {
            defer wg.Done()
            pool.Put(fn)
        }()
    }

    wg.Wait()
}

2. Use channels to pass data instead of shared memory

Sharing memory between goroutines may cause data races and unpredictable behavior. Instead, passing data using channels is safer and more scalable.

package main

import (
    "fmt"
    "sync"
    "time"
)

var wg sync.WaitGroup
var ch = make(chan int)

func main() {
    for i := 0; i < 10000; i++ {
        go func(i int) {
            defer wg.Done()
            ch <- i
        }(i)
    }

    for i := 0; i < 10000; i++ {
        fmt.Println(<-ch)
    }

    close(ch)
    wg.Wait()
}

3. Avoid using heavy locks

Locks are crucial in concurrent programming, but overuse can lead to performance degradation. Consider using lock-free data structures (such as atomic values ​​or lock-free queues) to reduce contention.

package main

import (
    "sync/atomic"
    "unsafe"
)

var (
    count int32
    ptr unsafe.Pointer
)

func main() {
    for i := 0; i < 10000; i++ {
        atomic.AddInt32(&count, 1)
        atomic.StorePointer(&ptr, nil)
    }
}

4. Execute tasks in parallel

Take full advantage of the concurrency features of Go by using goroutine to execute tasks in parallel instead of serial execution.

package main

import (
    "fmt"
    "sync"
)

func main() {
    var wg sync.WaitGroup
    wg.Add(3)
    go func() {
        for i := 0; i < 10000; i++ {
            fmt.Println(i)
        }
        wg.Done()
    }()

    go func() {
        for i := 10000; i < 20000; i++ {
            fmt.Println(i)
        }
        wg.Done()
    }()

    go func() {
        for i := 20000; i < 30000; i++ {
            fmt.Println(i)
        }
        wg.Done()
    }()

    wg.Wait()
}

The above is the detailed content of Performance optimization techniques in Go concurrent programming. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Interfaces and Polymorphism in Go: Achieving Code ReusabilityInterfaces and Polymorphism in Go: Achieving Code ReusabilityApr 29, 2025 am 12:31 AM

InterfacesandpolymorphisminGoenhancecodereusabilityandmaintainability.1)Defineinterfacesattherightabstractionlevel.2)Useinterfacesfordependencyinjection.3)Profilecodetomanageperformanceimpacts.

How do you iterate through a map in Go?How do you iterate through a map in Go?Apr 28, 2025 pm 05:15 PM

Article discusses iterating through maps in Go, focusing on safe practices, modifying entries, and performance considerations for large maps.Main issue: Ensuring safe and efficient map iteration in Go, especially in concurrent environments and with l

How do you create a map in Go?How do you create a map in Go?Apr 28, 2025 pm 05:14 PM

The article discusses creating and manipulating maps in Go, including initialization methods and adding/updating elements.

What is the difference between an array and a slice in Go?What is the difference between an array and a slice in Go?Apr 28, 2025 pm 05:13 PM

The article discusses differences between arrays and slices in Go, focusing on size, memory allocation, function passing, and usage scenarios. Arrays are fixed-size, stack-allocated, while slices are dynamic, often heap-allocated, and more flexible.

How do you create a slice in Go?How do you create a slice in Go?Apr 28, 2025 pm 05:12 PM

The article discusses creating and initializing slices in Go, including using literals, the make function, and slicing existing arrays or slices. It also covers slice syntax and determining slice length and capacity.

How do you create an array in Go?How do you create an array in Go?Apr 28, 2025 pm 05:11 PM

The article explains how to create and initialize arrays in Go, discusses the differences between arrays and slices, and addresses the maximum size limit for arrays. Arrays vs. slices: fixed vs. dynamic, value vs. reference types.

What is the syntax for creating a struct in Go?What is the syntax for creating a struct in Go?Apr 28, 2025 pm 05:10 PM

Article discusses syntax and initialization of structs in Go, including field naming rules and struct embedding. Main issue: how to effectively use structs in Go programming.(Characters: 159)

How do you create a pointer in Go?How do you create a pointer in Go?Apr 28, 2025 pm 05:09 PM

The article explains creating and using pointers in Go, discussing benefits like efficient memory use and safe management practices. Main issue: safe pointer use.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.