search
HomeBackend DevelopmentC++How to implement C++ multi-thread programming based on the Actor model?

C++ multi-threaded programming implementation based on the Actor model: Create an Actor class that represents an independent entity. Set the message queue where messages are stored. Defines the actor's methods for receiving and processing messages from the queue. Create Actor objects and start threads to run them. Send messages to the Actor via the message queue. This approach provides high concurrency, scalability, and isolation, making it ideal for applications that need to handle large numbers of parallel tasks.

How to implement C++ multi-thread programming based on the Actor model?

C++ multi-thread programming implementation based on Actor model

Introduction

Actor A model is a mathematical model for concurrent programming that models concurrent systems as a series of independent entities or actors that send messages to each other. In C++, using the Actor model for multi-threaded programming can lead to greater concurrency and scalability.

Actor model implementation

Implementing the Actor model in C++ requires the following key elements:

  • Actor class: Represents an independent entity responsible for processing messages.
  • Message Queue: Stores messages to be sent to Actors.
  • Message passing: Actor is responsible for receiving messages from the message queue and processing them.

Code Implementation

The following code provides an example implementation of multi-threaded programming using the Actor model and C++:

class Actor {
public:
    Actor(MessageQueue<Message>& messageQueue) : messageQueue(messageQueue) {}
    void run() {
        while (true) {
            Message message;
            messageQueue.get(message);
            handleMessage(message);
        }
    }
    virtual void handleMessage(Message message) = 0;

private:
    MessageQueue<Message>& messageQueue;
};

int main() {
    // 创建一个消息队列
    MessageQueue<Message> messageQueue;

    // 创建两个 Actor
    Actor actor1(messageQueue);
    Actor actor2(messageQueue);

    // 启动 Actor 线程
    std::thread thread1(&Actor::run, &actor1);
    std::thread thread2(&Actor::run, &actor2);

    // 发送消息到 Actor
    messageQueue.put(Message{1, "Hello from actor 1"});
    messageQueue.put(Message{2, "Hello from actor 2"});

    // 等待 Actor 线程完成
    thread1.join();
    thread2.join();

    return 0;
}

Practical case

In this practical case, we create two Actors and put them into a messaging system. Each Actor has its own message queue and is responsible for processing messages sent to it. In this case, the message contains an integer ID and a text message.

When the program runs, the Actor thread starts and starts getting messages from the message queue. When a message is received, the Actor is responsible for executing the corresponding logic based on the message ID. In this example, the Actor prints out received text messages.

Advantages

C++ multi-threaded programming based on the Actor model has the following advantages:

  • High concurrency: Actors can run independently, allowing multiple tasks to be handled simultaneously.
  • Scalability: Actors can be easily added or removed to accommodate different concurrency requirements.
  • Isolation: Actors are isolated from each other, which means that the failure of one Actor will not affect other Actors.

The above is the detailed content of How to implement C++ multi-thread programming based on the Actor model?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
C# vs. C  : Memory Management and Garbage CollectionC# vs. C : Memory Management and Garbage CollectionApr 15, 2025 am 12:16 AM

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

Beyond the Hype: Assessing the Relevance of C   TodayBeyond the Hype: Assessing the Relevance of C TodayApr 14, 2025 am 12:01 AM

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

The C   Community: Resources, Support, and DevelopmentThe C Community: Resources, Support, and DevelopmentApr 13, 2025 am 12:01 AM

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# vs. C  : Where Each Language ExcelsC# vs. C : Where Each Language ExcelsApr 12, 2025 am 12:08 AM

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

The Continued Use of C  : Reasons for Its EnduranceThe Continued Use of C : Reasons for Its EnduranceApr 11, 2025 am 12:02 AM

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The Future of C   and XML: Emerging Trends and TechnologiesThe Future of C and XML: Emerging Trends and TechnologiesApr 10, 2025 am 09:28 AM

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

Modern C   Design Patterns: Building Scalable and Maintainable SoftwareModern C Design Patterns: Building Scalable and Maintainable SoftwareApr 09, 2025 am 12:06 AM

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C   Multithreading and Concurrency: Mastering Parallel ProgrammingC Multithreading and Concurrency: Mastering Parallel ProgrammingApr 08, 2025 am 12:10 AM

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.