search
HomeBackend DevelopmentGolangHow to safely obtain shared data in Goroutine?

How to safely obtain shared data in Goroutine?

Jun 04, 2024 pm 05:37 PM
Concurrency safety

In Go, the shared data of goroutine can be safely obtained through the following methods: 1. Mutex (Mutex): allows one goroutine to have exclusive access to shared data; 2. Channel (Channel): coordinates access to shared data and acts as a goroutine 3. Atomic Operation: read and modify shared variables atomically to ensure data consistency.

如何在 Goroutine 中安全地获取共享数据?

#How to safely obtain shared data in goroutine in Go?

In concurrent programming, coordinating access to shared data is crucial. The Go language provides several ways to achieve this, including mutexes, channels, and atomic operations.

Mutex lock

Mutex lock (Mutex) is used to allow one goroutine to access shared data at a time. To create a mutex, use the sync.Mutex type. The following is an example of how to use a mutex:

package main

import (
    "fmt"
    "sync"
)

// 共享变量
var counter int

func main() {
    var mu sync.Mutex

    // 创建 10 个 goroutine,每个 goroutine 增加 counter
    for i := 0; i < 10; i++ {
        go func() {
            mu.Lock()
            defer mu.Unlock()
            counter++
            fmt.Printf("goroutine %d: %d\n", i, counter)
        }()
    }
}

Channel

Channels can be used to pass data between goroutines and can also be used to coordinate access to shared data . To create a channel, you can use the make(chan) function. Here is an example of how to use channels:

package main

import (
    "fmt"
    "sync"
)

// 共享变量
var counter int

func main() {
    ch := make(chan struct{})

    // 创建 10 个 goroutine,每个 goroutine 增加 counter
    for i := 0; i < 10; i++ {
        go func() {
            defer close(ch)

            for {
                select {
                case <-ch:
                    return
                default:
                    counter++
                    fmt.Printf("goroutine %d: %d\n", i, counter)
                }
            }
        }()
    }

    // 等待所有 goroutine 完成
    for i := 0; i < 10; i++ {
        <-ch
    }
}

Atomic operations

Atomic operations can be used to atomically read and modify the value of a shared variable. The Go language provides the sync/atomic package to support atomic operations. Here is an example of how to use atomic operations:

package main

import (
    "fmt"
    "sync/atomic"
)

// 共享变量
var counter int

func main() {
    // 使用 AddInt64 增加 counter
    for i := 0; i < 10; i++ {
        go func() {
            atomic.AddInt64(&counter, 1)
            fmt.Printf("goroutine %d: %d\n", i, counter)
        }()
    }
}

Among these methods, which method to choose depends on the specific scenario and the required level of security assurance.

The above is the detailed content of How to safely obtain shared data in Goroutine?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Golang in Action: Real-World Examples and ApplicationsGolang in Action: Real-World Examples and ApplicationsApr 12, 2025 am 12:11 AM

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

Golang: The Go Programming Language ExplainedGolang: The Go Programming Language ExplainedApr 10, 2025 am 11:18 AM

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Golang's Purpose: Building Efficient and Scalable SystemsGolang's Purpose: Building Efficient and Scalable SystemsApr 09, 2025 pm 05:17 PM

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Why do the results of ORDER BY statements in SQL sorting sometimes seem random?Why do the results of ORDER BY statements in SQL sorting sometimes seem random?Apr 02, 2025 pm 05:24 PM

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

Is technology stack convergence just a process of technology stack selection?Is technology stack convergence just a process of technology stack selection?Apr 02, 2025 pm 05:21 PM

The relationship between technology stack convergence and technology selection In software development, the selection and management of technology stacks are a very critical issue. Recently, some readers have proposed...

How to use reflection comparison and handle the differences between three structures in Go?How to use reflection comparison and handle the differences between three structures in Go?Apr 02, 2025 pm 05:15 PM

How to compare and handle three structures in Go language. In Go programming, it is sometimes necessary to compare the differences between two structures and apply these differences to the...

How to view globally installed packages in Go?How to view globally installed packages in Go?Apr 02, 2025 pm 05:12 PM

How to view globally installed packages in Go? In the process of developing with Go language, go often uses...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.