The core methods of managing the Goroutine life cycle in Go are as follows: Use context.Context: Control the Goroutine life cycle through cancellation signals and deadlines. Use sync.WaitGroup: Wait for the Goroutine to complete its task so that the main Goroutine can continue execution. Use channels: coordinate multiple Goroutines through signal communication, and wait for subsequent processing after all Goroutines are completed.
Manage the life cycle of Goroutine in Go
Goroutine is a lightweight thread in Go that supports concurrency. Their management is crucial to prevent resource leaks and program crashes. This article will explore various methods of managing the Goroutine life cycle, including:
1. Using context.Context
context.Context
Provides a mechanism to propagate cancellation and deadline signals within Goroutine. To use it to manage the Goroutine life cycle, you can use the following steps:
package main import ( "context" "fmt" "time" ) func main() { ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second) defer cancel() go func() { // Goroutine 的代码 }() // 等待 Goroutine 完成,或超时。 select { case <-ctx.Done(): fmt.Println("Goroutine 已取消或超时。") } }
2. Use sync.WaitGroup
sync .WaitGroup
Allows Goroutines to wait for each other until they complete their respective tasks. Use it to manage the life cycle of Goroutine. You can wait in the main Goroutine for all child Goroutines to complete.
package main import ( "fmt" "runtime" "sync" ) func main() { wg := sync.WaitGroup{} // 创建 5 个子 Goroutine for i := 0; i < 5; i++ { wg.Add(1) // 递增WaitGroup计数,表明正在等待另一个Goroutine完成 go func(i int) { fmt.Printf("Goroutine %d 结束。\n", i) wg.Done() // 递减WaitGroup计数,表明Goroutine已完成 }(i) } // 等待所有子 Goroutine 完成 wg.Wait() fmt.Println("所有子 Goroutine 都已完成。") }
3. Using channels
Channels can communicate between Goroutines and can also be used to manage their life cycles. A master goroutine can wait for all child goroutines to complete by sending a signal to a channel that marks the goroutine as completed.
package main import ( "fmt" "sync" ) func main() { var wg sync.WaitGroup signals := make(chan struct{}) // 创建 5 个子 Goroutine for i := 0; i < 5; i++ { wg.Add(1) go func(i int) { defer wg.Done() // Goroutine退出时递减WaitGroup计数 // 等待其他Goroutine完成 <-signals fmt.Printf("Goroutine %d 已完成。\n", i) }(i) } // 等待所有子 Goroutine完成 wg.Wait() // 发送信号标记所有子Goroutine都已完成 close(signals) fmt.Println("所有子 Goroutine 都已完成。") }
The above is the detailed content of How to manage Goroutine lifecycle in Go?. For more information, please follow other related articles on the PHP Chinese website!

Golang is suitable for rapid development and concurrent programming, while C is more suitable for projects that require extreme performance and underlying control. 1) Golang's concurrency model simplifies concurrency programming through goroutine and channel. 2) C's template programming provides generic code and performance optimization. 3) Golang's garbage collection is convenient but may affect performance. C's memory management is complex but the control is fine.

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

The relationship between technology stack convergence and technology selection In software development, the selection and management of technology stacks are a very critical issue. Recently, some readers have proposed...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.