Home > Article > Backend Development > How to use STL for distributed computing in C++?
How to use STL for distributed computing in C++? By using STL algorithm parallelization, working with executors and developing practical cases such as image processing pipelines.
How to use STL for distributed computing in C++
Introduction
Distributed computing involves distributing tasks across multiple computer nodes to increase processing speed. The C++ Standard Template Library (STL) provides concurrency tools that enable you to develop distributed computing applications.
Parallelizing STL Algorithms
You can parallelize STL algorithms by using the std::async
and std::future
functions change. std::async
Starts an asynchronous task and returns a handle to the std::future
object generated by the task.
// 计算无序向量中所有整数的总和 std::vector<int> numbers = {1, 2, 3, 4, 5}; int sum = 0; // 并行化 for_each 算法 std::for_each(numbers.begin(), numbers.end(), [&](int n) { std::future<int> result = std::async(std::launch::async, [] { return n * n; }); // 在另一个线程中执行的计算 sum += result.get(); }); std::cout << "Sum: " << sum << std::endl;
Using Executors
Executors are part of the concurrency library and provide an abstraction for managing tasks across thread pools. STL algorithms can be parallelized on the executor using the std::execution::parallel_unsequenced
strategy.
// 查找向量中所有奇数 std::vector<int> numbers = {1, 2, 3, 4, 5}; std::vector<int> oddNumbers; // 使用执行器上的 parallel_unsequenced 策略 std::execution::parallel_unsequenced(numbers.begin(), numbers.end(), [&](int n) { if (n % 2) oddNumbers.push_back(n); }); std::cout << "Odd numbers: "; for (int n : oddNumbers) { std::cout << n << " "; } std::cout << std::endl;
Practical case
Parallelized image processing pipeline
Imagine that you have a pipeline to process images, including Resize, convert and save image operations. By parallelizing these operations, you can significantly increase pipeline throughput.
// 图像处理管道 struct ImageProcessingPipeline { // 调整大小 std::vector<std::future<cv::Mat>> resizeTasks; // 转换 std::vector<std::future<cv::Mat>> convertTasks; // 保存 std::vector<std::future<void>> saveTasks; // 执行管道 std::vector<cv::Mat> execute(const std::vector<cv::Mat>& images) { for (const cv::Mat& image : images) { // 并行化调整大小 resizeTasks.emplace_back(std::async(std::launch::async, [&image] { return resize(image, 500, 500); })); } // 等待所有调整大小的任务完成 for (auto& task : resizeTasks) task.get(); // 并行化转换 for (auto& resizedImage : resizeTasks) { convertTasks.emplace_back( std::async(std::launch::async, [&resizedImage] { return convert(resizedImage); })); } // 等待所有转换任务完成 for (auto& task : convertTasks) task.get(); // 并行化保存 for (auto& convertedImage : convertTasks) { saveTasks.emplace_back(std::async(std::launch::async, [&convertedImage](const std::string& path) { return save(convertedImage, path); }, "output/image_" + std::to_string(i) + ".jpg")); } // 等待所有保存任务完成 for (auto& task : saveTasks) task.get(); } };
You can easily develop efficient distributed computing applications in C++ by using STL's concurrency tools and executors.
The above is the detailed content of How to use STL for distributed computing in C++?. For more information, please follow other related articles on the PHP Chinese website!