Home  >  Article  >  Backend Development  >  How to use STL for distributed computing in C++?

How to use STL for distributed computing in C++?

WBOY
WBOYOriginal
2024-06-03 14:48:56973browse

How to use STL for distributed computing in C++? By using STL algorithm parallelization, working with executors and developing practical cases such as image processing pipelines.

如何在 C++ 中使用 STL 进行分布式计算?

How to use STL for distributed computing in C++

Introduction

Distributed computing involves distributing tasks across multiple computer nodes to increase processing speed. The C++ Standard Template Library (STL) provides concurrency tools that enable you to develop distributed computing applications.

Parallelizing STL Algorithms

You can parallelize STL algorithms by using the std::async and std::future functions change. std::async Starts an asynchronous task and returns a handle to the std::future object generated by the task.

// 计算无序向量中所有整数的总和
std::vector<int> numbers = {1, 2, 3, 4, 5};
int sum = 0;

// 并行化 for_each 算法
std::for_each(numbers.begin(), numbers.end(), [&](int n) {
  std::future<int> result = std::async(std::launch::async, [] { return n * n; });

  // 在另一个线程中执行的计算
  sum += result.get();
});

std::cout << "Sum: " << sum << std::endl;

Using Executors

Executors are part of the concurrency library and provide an abstraction for managing tasks across thread pools. STL algorithms can be parallelized on the executor using the std::execution::parallel_unsequenced strategy.

// 查找向量中所有奇数
std::vector<int> numbers = {1, 2, 3, 4, 5};
std::vector<int> oddNumbers;

// 使用执行器上的 parallel_unsequenced 策略
std::execution::parallel_unsequenced(numbers.begin(), numbers.end(),
                                    [&](int n) { if (n % 2) oddNumbers.push_back(n); });

std::cout << "Odd numbers: ";
for (int n : oddNumbers) {
  std::cout << n << " ";
}
std::cout << std::endl;

Practical case

Parallelized image processing pipeline

Imagine that you have a pipeline to process images, including Resize, convert and save image operations. By parallelizing these operations, you can significantly increase pipeline throughput.

// 图像处理管道
struct ImageProcessingPipeline {
  // 调整大小
  std::vector<std::future<cv::Mat>> resizeTasks;

  // 转换
  std::vector<std::future<cv::Mat>> convertTasks;

  // 保存
  std::vector<std::future<void>> saveTasks;

  // 执行管道
  std::vector<cv::Mat> execute(const std::vector<cv::Mat>& images) {
    for (const cv::Mat& image : images) {
      // 并行化调整大小
      resizeTasks.emplace_back(std::async(std::launch::async,
                                         [&image] { return resize(image, 500, 500); }));
    }

    // 等待所有调整大小的任务完成
    for (auto& task : resizeTasks) task.get();

    // 并行化转换
    for (auto& resizedImage : resizeTasks) {
      convertTasks.emplace_back(
          std::async(std::launch::async, [&resizedImage] { return convert(resizedImage); }));
    }

    // 等待所有转换任务完成
    for (auto& task : convertTasks) task.get();

    // 并行化保存
    for (auto& convertedImage : convertTasks) {
      saveTasks.emplace_back(std::async(std::launch::async,
                                     [&convertedImage](const std::string& path) { return save(convertedImage, path); },
                                     "output/image_" + std::to_string(i) + ".jpg"));
    }

    // 等待所有保存任务完成
    for (auto& task : saveTasks) task.get();
  }
};

You can easily develop efficient distributed computing applications in C++ by using STL's concurrency tools and executors.

The above is the detailed content of How to use STL for distributed computing in C++?. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn