search
HomeTechnology peripheralsAIICML 2024 | The new frontier of large language model pre-training: 'Best Adaptation Packaging' reshapes document processing standards

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准
The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

##In the training process of large language models, the way of data processing is crucial important.

#Traditional methods usually splice and split a large number of documents into training sequences equal to the context length of the model. Although this improves training efficiency, it often leads to unnecessary truncation of documents, damages data integrity, and leads to the loss of key contextual information, which in turn affects the logical coherence and factual consistency of the content learned by the model, and makes the model easier to Hallucinations.

Researchers at AWS AI Labs conducted an in-depth study of this common splicing-chunking text processing method and found that it seriously affects the model's understanding of contextual coherence and facts. The ability to be consistent. This not only affects the model's performance on downstream tasks, but also increases the risk of hallucinations.

In response to this problem, they proposed an innovative document processing strategy - Best-fit Packing (Best-fit Packing), which eliminates the problem by optimizing document combinations. Unnecessary text truncation, significantly improves model performance and reduces model artifacts. This research has been accepted into ICML 2024.

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

Article title: Fewer Truncations Improve Language Modeling
Paper link: https://arxiv.org/pdf/2404.10830

Research background

In the traditional large language model training method, in order to improve efficiency , researchers typically splice together multiple input documents and then split these spliced ​​documents into fixed-length sequences.

Although this method is simple and efficient, it will cause a major problem - document truncation (document truncation), damaging data integrity (data integrity). Document truncation results in a loss of information contained in the document.

Additionally, document truncation reduces the amount of context in each sequence, potentially causing the prediction of the next word to be irrelevant to the previous one, making the model more susceptible to hallucinations ( hallucination).

The following example shows the problems caused by document truncation:

  • Figure 2 (a): In Python programming, although the original code is correct, splitting the definition and use of variables into different training sequences will introduce syntax errors, causing some variables to be undefined in subsequent training sequences, causing the model to learn errors patterns and may produce hallucinations in downstream tasks. For example, in program synthesis tasks, a model may use variables directly without defining them.
  • Figure 2(b): Truncation also damages the integrity of the information. For example, "Monday morning" in the summary cannot match any context in the training sequence, resulting in inaccurate content. This kind of incomplete information will significantly reduce the sensitivity of the model to contextual information, causing the generated content to be inconsistent with the actual situation, which is the so-called unfaithful generation.
  • Figure 2(c): Truncation also hinders knowledge acquisition during training, because the representation of knowledge in text often relies on complete sentences or paragraphs. For example, the model cannot learn the location of the ICML conference because the conference name and location are distributed in different training sequences.
ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

Figure 2. Example of document truncation leading to illusion or loss of knowledge. (a) The variable definition (blue part) is truncated and subsequent usage calls result in an undefined name (red part). (b) Key contextual information is truncated (blue part), making the summary less accurate than the original text (red part). (c) Due to truncation, the model does not know where ICML 2024 will be held.

Best-fit Packing

To address this problem, researchers proposed Best-fit Packing.

This method uses length-aware combinatorial optimization techniques to efficiently pack documents into training sequences, completely eliminating unnecessary truncation. This not only maintains the training efficiency of traditional methods, but also substantially improves the quality of model training by reducing data fragmentation.

#The author first splits each text into one or more sequences up to the length of the model context length L. The limitation of this step comes from the model, so it must be carried out.

Now, based on a large number of file blocks that are at most L in length, researchers hope to combine them reasonably and obtain as few training sequences as possible. This problem can be viewed as a Bin Packing problem. The assembly optimization problem is NP-hard. As shown in the algorithm below, here they adopt the heuristic strategy of Best-Fit-Decreasing (BFD).

Next, we will discuss the feasibility of BFD from the perspective of time complexity (Time Complexity) and compactness (Compactness).

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

Time complexity:

Sorting sum of BFD The time complexity of packaging is O(N log N), where N is the number of document blocks. In pre-training data processing, since the length of the document block is an integer and limited ([1, L]), count sort can be used to reduce the time complexity of sorting to O(N).

In the packaging phase, by using the data structure of the segment tree, each operation of finding the best-fitting container only takes logarithmic time, that is, O (log L). And because L

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

Compactness:

##Compactness is another important factor in measuring the effectiveness of the packaging algorithm Indicators, it is necessary to reduce the number of training sequences as much as possible to improve the efficiency of model training without destroying the integrity of the original document.

In practical applications, by precisely controlling the filling and arrangement of sequences, best-fit packing can generate an almost equivalent number of training sequences as traditional methods, while significantly reducing Data loss due to truncation is eliminated.

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

Based on experiments on natural language (RefinedWeb) and programming language (The Stack) data sets, we found that best-fit packaging significantly reduces text truncation.

It is worth noting that most documents contain less than 2048 tokens; due to the truncation caused by traditional splicing-blocking mainly occurs in this range, Best-fit packaging will not truncate any document with a length less than L, thus effectively maintaining the integrity of the vast majority of documents.

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

Figure 4: When the maximum sequence length is set to 2k or 8k, under different document lengths, the number of documents and the number of truncation corresponding to each document length. After using the "Best-fit Packing" technology, the number of truncation is significantly reduced. Above: Natural language. Below: Programming languages.

##Experiments and results

Researchers reported in detail the performance comparison of language models trained using best-fit packaging and traditional methods (i.e. splicing methods) on different tasks, including: natural language processing and programming language tasks, such as reading comprehension (Reading Comprehension), Natural Language Inference (Natural Language Inference), Context Following (Context Following), Text Summarization (Summarization), World Knowledge (Commonsense and Closed-book QA) and Program Synthesis (Program Synthesis), a total of 22 subtasks.

The experiments involved model sizes ranging from 7 billion to 13 billion parameters, sequence lengths from 2,000 to 8,000 tokens, and data sets covering natural languages ​​and programming languages. These models are trained on large-scale datasets such as Falcon RefinedWeb and The Stack, and experiments are conducted using the LLaMA architecture.

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

Experimental results show that using optimal adaptation packaging improves model performance in a series of tasks, especially in reading comprehension (4.7%), natural language reasoning ( The performance is significant in tasks such as 9.3%), context following (16.8%) and program synthesis (15.0%) (Due to the different scales of metrics for different tasks, the author defaults to relative improvement to describe the results.)

After statistical testing, the researchers found that all results were either statistically significantly better than the baseline (marked as s) or on par with the baseline (marked as n), and in all evaluated tasks, using No significant performance degradation was observed for any of the best-fit packings.

This improvement in consistency and monotonicity highlights that optimal adaptation packaging can not only improve the overall performance of the model, but also ensure the performance under different tasks and conditions. stability. Please refer to the text for detailed results and discussions.

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

##

The authors focused on the impact of best-fit packaging on illusion.

In summary generation, using the QAFactEval metric it was found that models using best-fit packaging had a significantly lower in generating hallucinations.

More significantly, in the program synthesis task, when using the best-fit packaged trained model to generate code, the "Undefined Name" The error was reduced by up to 58.3%, which shows that the model has a more complete understanding of the program structure and logic, thereby effectively reducing hallucinations.

#The authors also reveal differences in the model’s performance when dealing with different types of knowledge.

As mentioned earlier, truncation during training may affect the integrity of the information, thereby hindering the acquisition of knowledge. But the questions in most standard assessment sets focus on common knowledge, which occurs frequently in human language. So even if some knowledge is lost due to truncation, the model still has a good chance of learning this information from the document fragments.

In contrast, uncommon
tail knowledge
is more susceptible to truncation because this type of information is in the training data The frequency of occurrence itself is low, and it is difficult for the model to supplement the lost knowledge from other sources.

By analyzing the results of the two test sets ARC-C and ARC-E, the researchers found that compared to ARC-E, which contains more common knowledge, using Optimal fit packaging will result in a more significant performance improvement in the model in ARC-C, which contains more tail knowledge.

This finding was further verified by counting the number of co-occurrences of each question-answer pair in Kandpal et al. (2023) preprocessed Wikipedia entity map . Statistical results show that the challenge set (ARC-C) contains more rare co-occurring pairs, which verifies the hypothesis that optimal adaptation packaging can effectively support tail knowledge learning, and also explains why traditional large language models are unable to learn long-tail knowledge. provides an explanation for the difficulties encountered.

ICML 2024 | 大语言模型预训练新前沿:「最佳适配打包」重塑文档处理标准

Summary

##This article proposes large-scale language model training Common document truncation problem.
This truncation effect affects the model's ability to learn logical coherence and factual consistency, and increases the hallucination phenomenon during the generation process. The authors proposed Best-fit Packing, which maximizes the integrity of each document by optimizing the data sorting process. This method is not only suitable for processing large-scale data sets with billions of documents, but is also on par with traditional methods in terms of data compactness.
Experimental results show that this method is extremely effective in reducing unnecessary truncation, and can significantly improve the performance of the model in various text and code tasks, while effectively reducing The illusion of closed-domain language generation. Although the experiments in this paper mainly focus on the pre-training stage, optimal adaptation packaging can also be widely used in other stages such as fine-tuning. This work contributes to the development of more efficient and reliable language models and advances the development of language model training technology.
For more study details, please see the original paper. If you are interested in a job or internship, you can contact the author of this article by email zijwan@amazon.com.

The above is the detailed content of ICML 2024 | The new frontier of large language model pre-training: 'Best Adaptation Packaging' reshapes document processing standards. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
From Friction To Flow: How AI Is Reshaping Legal WorkFrom Friction To Flow: How AI Is Reshaping Legal WorkMay 09, 2025 am 11:29 AM

The legal tech revolution is gaining momentum, pushing legal professionals to actively embrace AI solutions. Passive resistance is no longer a viable option for those aiming to stay competitive. Why is Technology Adoption Crucial? Legal professional

This Is What AI Thinks Of You And Knows About YouThis Is What AI Thinks Of You And Knows About YouMay 09, 2025 am 11:24 AM

Many assume interactions with AI are anonymous, a stark contrast to human communication. However, AI actively profiles users during every chat. Every prompt, every word, is analyzed and categorized. Let's explore this critical aspect of the AI revo

7 Steps To Building A Thriving, AI-Ready Corporate Culture7 Steps To Building A Thriving, AI-Ready Corporate CultureMay 09, 2025 am 11:23 AM

A successful artificial intelligence strategy cannot be separated from strong corporate culture support. As Peter Drucker said, business operations depend on people, and so does the success of artificial intelligence. For organizations that actively embrace artificial intelligence, building a corporate culture that adapts to AI is crucial, and it even determines the success or failure of AI strategies. West Monroe recently released a practical guide to building a thriving AI-friendly corporate culture, and here are some key points: 1. Clarify the success model of AI: First of all, we must have a clear vision of how AI can empower business. An ideal AI operation culture can achieve a natural integration of work processes between humans and AI systems. AI is good at certain tasks, while humans are good at creativity and judgment

Netflix New Scroll, Meta AI's Game Changers, Neuralink Valued At $8.5 BillionNetflix New Scroll, Meta AI's Game Changers, Neuralink Valued At $8.5 BillionMay 09, 2025 am 11:22 AM

Meta upgrades AI assistant application, and the era of wearable AI is coming! The app, designed to compete with ChatGPT, offers standard AI features such as text, voice interaction, image generation and web search, but has now added geolocation capabilities for the first time. This means that Meta AI knows where you are and what you are viewing when answering your question. It uses your interests, location, profile and activity information to provide the latest situational information that was not possible before. The app also supports real-time translation, which completely changed the AI ​​experience on Ray-Ban glasses and greatly improved its usefulness. The imposition of tariffs on foreign films is a naked exercise of power over the media and culture. If implemented, this will accelerate toward AI and virtual production

Take These Steps Today To Protect Yourself Against AI CybercrimeTake These Steps Today To Protect Yourself Against AI CybercrimeMay 09, 2025 am 11:19 AM

Artificial intelligence is revolutionizing the field of cybercrime, which forces us to learn new defensive skills. Cyber ​​criminals are increasingly using powerful artificial intelligence technologies such as deep forgery and intelligent cyberattacks to fraud and destruction at an unprecedented scale. It is reported that 87% of global businesses have been targeted for AI cybercrime over the past year. So, how can we avoid becoming victims of this wave of smart crimes? Let’s explore how to identify risks and take protective measures at the individual and organizational level. How cybercriminals use artificial intelligence As technology advances, criminals are constantly looking for new ways to attack individuals, businesses and governments. The widespread use of artificial intelligence may be the latest aspect, but its potential harm is unprecedented. In particular, artificial intelligence

A Symbiotic Dance: Navigating Loops Of Artificial And Natural PerceptionA Symbiotic Dance: Navigating Loops Of Artificial And Natural PerceptionMay 09, 2025 am 11:13 AM

The intricate relationship between artificial intelligence (AI) and human intelligence (NI) is best understood as a feedback loop. Humans create AI, training it on data generated by human activity to enhance or replicate human capabilities. This AI

AI's Biggest Secret — Creators Don't Understand It, Experts SplitAI's Biggest Secret — Creators Don't Understand It, Experts SplitMay 09, 2025 am 11:09 AM

Anthropic's recent statement, highlighting the lack of understanding surrounding cutting-edge AI models, has sparked a heated debate among experts. Is this opacity a genuine technological crisis, or simply a temporary hurdle on the path to more soph

Bulbul-V2 by Sarvam AI: India's Best TTS ModelBulbul-V2 by Sarvam AI: India's Best TTS ModelMay 09, 2025 am 10:52 AM

India is a diverse country with a rich tapestry of languages, making seamless communication across regions a persistent challenge. However, Sarvam’s Bulbul-V2 is helping to bridge this gap with its advanced text-to-speech (TTS) t

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software