How to deal with concurrency control in C++ class design?
Concurrency control in C uses mechanisms such as mutexes (accessing critical sections at one time), condition variables (waiting for conditions to be met), read-write locks (allowing multiple readers to read at the same time, but only one write) to solve the problem. Data races and inconsistent states caused by concurrent access to shared resources.
Concurrency control in C class design
Introduction
In a multi-threaded environment, concurrent access to shared resources may cause data Contested and inconsistent states. To solve this problem, C provides several mechanisms to handle concurrency control.
Mutex
A mutex is a synchronization primitive that allows only one thread to access a critical section at a time. We can use the std::mutex
class to create a mutex:
std::mutex mutex;
To access the critical section, the thread must acquire the lock of the mutex:
mutex.lock(); // 访问临界区 mutex.unlock();
Conditions Variable
A condition variable is a synchronization primitive that allows one thread to wait for another thread to complete a specific condition. We can use the std::condition_variable
class to create a condition variable:
std::condition_variable cv;
Threads can wait for conditions by calling the wait()
method:
cv.wait(mutex);
When the conditions are met, another thread can call the notify_one()
or notify_all()
method to notify the waiting thread:
cv.notify_one(); cv.notify_all();
Read-write lock
Read-write lock is a synchronization primitive that allows multiple threads to read shared resources at the same time, but only one thread can write to shared resources at a time. We can use the std::shared_mutex
class to create a read-write lock:
std::shared_mutex rw_mutex;
To read shared resources, the thread can acquire a read lock:
rw_mutex.lock_shared(); // 读取共享资源 rw_mutex.unlock_shared();
To write to the share Resources, threads can acquire write locks:
rw_mutex.lock(); // 写入共享资源 rw_mutex.unlock();
Practical case
Consider a simple bank account class, which contains a balance member variable and a method for deposits and withdrawals:
class BankAccount { public: BankAccount(int initial_balance) : balance(initial_balance) {} void deposit(int amount) { balance += amount; } void withdraw(int amount) { if (amount <= balance) { balance -= amount; } } private: int balance; };
To handle concurrent access, we can use a mutex to protect the balance member variable:
class BankAccount { public: BankAccount(int initial_balance) : balance(initial_balance) {} void deposit(int amount) { std::lock_guard<std::mutex> lock(mutex); balance += amount; } void withdraw(int amount) { std::lock_guard<std::mutex> lock(mutex); if (amount <= balance) { balance -= amount; } } private: std::mutex mutex; int balance; };
Now, we can safely access the bank account concurrently from multiple threads.
The above is the detailed content of How to deal with concurrency control in C++ class design?. For more information, please follow other related articles on the PHP Chinese website!

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

There are significant differences in how C# and C implement and features in object-oriented programming (OOP). 1) The class definition and syntax of C# are more concise and support advanced features such as LINQ. 2) C provides finer granular control, suitable for system programming and high performance needs. Both have their own advantages, and the choice should be based on the specific application scenario.

Converting from XML to C and performing data operations can be achieved through the following steps: 1) parsing XML files using tinyxml2 library, 2) mapping data into C's data structure, 3) using C standard library such as std::vector for data operations. Through these steps, data converted from XML can be processed and manipulated efficiently.

C# uses automatic garbage collection mechanism, while C uses manual memory management. 1. C#'s garbage collector automatically manages memory to reduce the risk of memory leakage, but may lead to performance degradation. 2.C provides flexible memory control, suitable for applications that require fine management, but should be handled with caution to avoid memory leakage.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version
Chinese version, very easy to use

WebStorm Mac version
Useful JavaScript development tools