search
HomeBackend DevelopmentC++Comparison of concurrent programming in C++ and Python

Both C and Python support concurrent programming. C uses threads and Python uses coroutines. C threads are more lightweight and Python coroutines are easier to use. In actual combat, C concurrent web server performs better than Python under high load, but Python is easier to develop and maintain under low load. The final choice depends on the needs of the specific application.

Comparison of concurrent programming in C++ and Python

Concurrent Programming: C vs. Python

Concurrent programming is a technique for performing multiple tasks simultaneously, which allows Multiple processors or threads handle different tasks simultaneously, thereby improving application performance. C and Python are two popular programming languages, both of which support concurrent programming.

Concurrent Programming in C

C uses threads to implement concurrent programming. Threads are lightweight code execution units, unlike processes, which are heavy-duty units scheduled by the operating system. In C, you can use the std::thread class to create threads. The following code creates a simple thread in C:

#include <iostream>
#include <thread>

void print_hello() {
  std::cout << "Hello, world!" << std::endl;
}

int main() {
  std::thread t(print_hello);
  t.join();
  return 0;
}

Concurrent Programming in Python

Python uses coroutines to implement concurrent programming. Coroutines are similar to threads, but they are more lightweight and have lower overhead. Coroutines can be implemented in Python using the async and await keywords. The following code creates a simple coroutine in Python:

import asyncio

async def print_hello():
  print("Hello, world!")

async def main():
  await print_hello()

asyncio.run(main())

Practical case: Concurrent Web server

In order to compare the performance of C and Python in concurrent programming, We can create a concurrent web server. The following code is a simple concurrent web server, implemented in C:

#include <iostream>
#include <boost/asio.hpp>

int main() {
  boost::asio::io_service io_service;
  boost::asio::ip::tcp::acceptor acceptor(io_service, boost::asio::ip::tcp::endpoint(boost::asio::ip::tcp::v4(), 8080));

  for (;;) {
    boost::asio::ip::tcp::socket socket(io_service);
    acceptor.accept(socket);
    std::thread t([&socket] {
      std::string request;
      socket.read_some(boost::asio::buffer(request));
      std::string response = "HTTP/1.1 200 OK\nContent-Type: text/plain\n\nHello, world!";
      socket.write_some(boost::asio::buffer(response));
      socket.close();
    });
    t.detach();
  }

  return 0;
}

The following code is a simple concurrent web server, implemented in Python:

import asyncio
import socket

async def handle_client(reader, writer):
  request = await reader.read(1024)
  response = "HTTP/1.1 200 OK\nContent-Type: text/plain\n\nHello, world!"
  writer.write(response.encode())
  await writer.drain()

async def main():
  server = await asyncio.start_server(handle_client, '127.0.0.1', 8080)
  await server.serve_forever()

asyncio.run(main())

Under high load, C Web servers generally perform better than Python web servers because threads have lower overhead than coroutines. However, for low load scenarios, a Python web server may be more suitable as it is easier to develop and maintain.

Conclusion

Both C and Python provide tools for concurrent programming, and each language has its advantages and disadvantages. C's threads are more lightweight, but Python's coroutines are easier to use. Ultimately, which language to choose depends on the needs of your specific application.

The above is the detailed content of Comparison of concurrent programming in C++ and Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Mastering Polymorphism in C  : A Deep DiveMastering Polymorphism in C : A Deep DiveMay 14, 2025 am 12:13 AM

Mastering polymorphisms in C can significantly improve code flexibility and maintainability. 1) Polymorphism allows different types of objects to be treated as objects of the same base type. 2) Implement runtime polymorphism through inheritance and virtual functions. 3) Polymorphism supports code extension without modifying existing classes. 4) Using CRTP to implement compile-time polymorphism can improve performance. 5) Smart pointers help resource management. 6) The base class should have a virtual destructor. 7) Performance optimization requires code analysis first.

C   Destructors vs Garbage Collectors : What are the differences?C Destructors vs Garbage Collectors : What are the differences?May 13, 2025 pm 03:25 PM

C destructorsprovideprecisecontroloverresourcemanagement,whilegarbagecollectorsautomatememorymanagementbutintroduceunpredictability.C destructors:1)Allowcustomcleanupactionswhenobjectsaredestroyed,2)Releaseresourcesimmediatelywhenobjectsgooutofscop

C   and XML: Integrating Data in Your ProjectsC and XML: Integrating Data in Your ProjectsMay 10, 2025 am 12:18 AM

Integrating XML in a C project can be achieved through the following steps: 1) parse and generate XML files using pugixml or TinyXML library, 2) select DOM or SAX methods for parsing, 3) handle nested nodes and multi-level properties, 4) optimize performance using debugging techniques and best practices.

Using XML in C  : A Guide to Libraries and ToolsUsing XML in C : A Guide to Libraries and ToolsMay 09, 2025 am 12:16 AM

XML is used in C because it provides a convenient way to structure data, especially in configuration files, data storage and network communications. 1) Select the appropriate library, such as TinyXML, pugixml, RapidXML, and decide according to project needs. 2) Understand two ways of XML parsing and generation: DOM is suitable for frequent access and modification, and SAX is suitable for large files or streaming data. 3) When optimizing performance, TinyXML is suitable for small files, pugixml performs well in memory and speed, and RapidXML is excellent in processing large files.

C# and C  : Exploring the Different ParadigmsC# and C : Exploring the Different ParadigmsMay 08, 2025 am 12:06 AM

The main differences between C# and C are memory management, polymorphism implementation and performance optimization. 1) C# uses a garbage collector to automatically manage memory, while C needs to be managed manually. 2) C# realizes polymorphism through interfaces and virtual methods, and C uses virtual functions and pure virtual functions. 3) The performance optimization of C# depends on structure and parallel programming, while C is implemented through inline functions and multithreading.

C   XML Parsing: Techniques and Best PracticesC XML Parsing: Techniques and Best PracticesMay 07, 2025 am 12:06 AM

The DOM and SAX methods can be used to parse XML data in C. 1) DOM parsing loads XML into memory, suitable for small files, but may take up a lot of memory. 2) SAX parsing is event-driven and is suitable for large files, but cannot be accessed randomly. Choosing the right method and optimizing the code can improve efficiency.

C   in Specific Domains: Exploring Its StrongholdsC in Specific Domains: Exploring Its StrongholdsMay 06, 2025 am 12:08 AM

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

Debunking the Myths: Is C   Really a Dead Language?Debunking the Myths: Is C Really a Dead Language?May 05, 2025 am 12:11 AM

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools